首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Shabana  J J McGrath 《Cryobiology》1988,25(4):338-354
Thermodynamic computer modeling was used to predict the freezing response of single-celled unfertilized hamster ova. The cell membrane transport characteristics were investigated, using a microscope diffusion chamber system. The mean osmotically inactive cell volume was determined to be 21.6% of the initial cell volume. An overall mean value of 0.8 +/- 0.1 micron3/micron2.min.atm (= 18 +/- 2.5 micron/sec) was determined for the membrane hydraulic coefficient, Lp. The effect of the extracellular solute concentration on Lp was determined at room temperature (approximately 23 degrees C). A thermodynamic computer model was used to predict the cell response to freezing. The predicted response was compared to the actual volumetric response observed during freezing on a temperature-controlled cryomicroscope conduction stage. The effect of the cooling rate on the nucleation temperature of unprotected ova and protected ova suspended in a 1.5 M DMSO solution was investigated. Overall mean nucleation temperatures of -13 and -57.1 degrees C were observed for unprotected and protected ova, respectively, where the mean nucleation temperature for protected ova was strongly cooling rate dependent.  相似文献   

2.
The present study aimed at the long-term storage of rumen protozoa as living cells in liquid nitrogen. The two-step or interrupted slow freezing procedure was used to cryopreserve six of the dominant species of rumen ciliates isolated from monofaunated animals, Dasytricha ruminantium, Entodinium caudatum, Epidinium ecaudatum caudatum, Eudiplodinium maggii, Isotricha prostoma, and Polyplastron multivesiculatum. We optimized the first step in the interrupted slow freezing procedure, from the extracellular ice nucleation temperature to the holding temperature, and studied the effects of the cooling rates on survival. In addition to the nature of the cryoprotectant (dimethyl sulfoxide), the equilibration temperature and equilibration time (25 degrees C and 5 min, respectively), and the holding time at subzero temperature (45 min) recommended previously (S. Kisidayová, J. Microbiol. Methods 22:185-192, 1995), we found that a holding temperature of -30 degrees C, a cooling rate from extracellular ice nucleation temperature to holding temperature of between 1.2 degrees C/min and 2.5 degrees C/min, depending on the ciliate, and rumen juice as the freezing and thawing medium markedly improved the survival rate. Survival rates determined after 2 weeks in liquid nitrogen were 100% for Isotricha, 98% for Dasytricha, 85% for Epidinium, 79% for Polyplastron, 63% for Eudiplodinium, and 60% for Entodinium. They were not significantly modified after a period of 1 year in liquid nitrogen. Four of the five ciliate species cryopreserved for 8 months in liquid nitrogen successfully colonized the rumen when inoculated into defaunated animals. These results have made it possible to set up a bank of cryopreserved rumen protozoa.  相似文献   

3.
Germinating conidiospores of Neurospora crassa that were exposed to 45 degrees C, a temperature that induces a heat shock response, were protected from injury caused by freezing in liquid nitrogen and subsequent thawing at 0 degrees C. Whereas up to 90% of the control spores were killed by this freezing and slow thawing, a prior heat shock increased cell survival four- to fivefold. Survival was determined by three assays: the extent of spore germination in liquid medium, the number of colonies that grew on solid medium, and dry-weight accumulation during exponential growth in liquid culture. The heat shock-induced protection against freezing injury was transient. Spores transferred to normal growth temperature after exposure to heat shock and before freezing lost the heat shock-induced protection within 30 min. Spores subjected to freezing and thawing stress synthesized small amounts of the heat shock proteins that are synthesized in large quantities by cells exposed to 45 degrees C. Pulse-labeling studies demonstrated that neither chilling the spores to 10 degrees C or 0 degrees C in the absence of freezing nor warming the spores from 0 degrees C to 30 degrees C induced heat shock protein synthesis. The presence of the protein synthesis inhibitor cycloheximide during spore exposure to 45 degrees C did not abolish the protection against freezing injury induced by heat shock. Treatment of the cells with cycloheximide before freezing, without exposure to heat shock, itself increased spore survival.  相似文献   

4.
Differential scanning calorimetry (DSC) was used to determine the amount of water that freezes in an aqueous suspension of multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. The studies were performed with dehydrated suspensions (12-20 wt% water) and suspensions containing an excess of water (30-70 wt% water). For suspensions that contained > or = 18 wt% water, two ice-formation events were observed during cooling. The first was attributed to heterogeneous nucleation of extraliposomal ice; the second was attributed to homogeneous nucleation of ice within the liposomes. In suspensions with an initial water concentration between 13 and 16 wt%, ice formation occurred only after homogeneous nucleation at temperatures below -40 degrees C. In suspensions containing < 13 wt% water, ice formation during cooling was undetectable by DSC, however, an endotherm resulting from ice melting during warming was observed in suspensions containing > or = 12 wt% water. In suspensions containing < 12 wt% water, an endotherm corresponding to the melting of ice was not observed during warming. The amount of ice that formed in the suspensions was determined by using an improved procedure to calculate the partial area of the endotherm resulting from the melting of ice during warming. The results show that a substantial proportion of water associated with the polar headgroup of phosphatidylcholine can be removed by freeze-induced dehydration, but the amount of ice depends on the thermal history of the samples. For example, after cooling to -100 degrees C at rates > or = 10 degrees C/min, a portion of water in the suspension remains supercooled because of a decrease in the diffusion rate of water with decreasing temperature. A portion of this supercooled water can be frozen during subsequent freeze-induced dehydration of the liposomes under isothermal conditions at subfreezing storage temperature Ts. During isothermal storage at Ts > or = -40 degrees C, the amount of unfrozen water decreased with decreasing Ts and increasing time of storage. After 30 min of storage at Ts = -40 degrees C and subsequent cooling to -100 degrees C, the amount of water associated with the polar headgroups was < 0.1 g/g of DPPC. At temperatures > -50 degrees C, the amount of unfrozen water associated with the polar headgroups of DPPC decreased with decreasing temperature in a manner predicted from the desorption isotherm of DPPC. However, at lower temperatures, the amount of unfrozen water remained constant, in large part, because the unfrozen water underwent a liquid-to-glass transformation at a temperature between -50 degrees and -140 degrees C.  相似文献   

5.
Fourier transform infrared spectroscopy (FTIR) and cryomicroscopy were used to define the process of cellular injury during freezing in LNCaP prostate tumor cells, at the molecular level. Cell pellets were monitored during cooling at 2 degrees C/min while the ice nucleation temperature was varied between -3 and -10 degrees C. We show that the cells tend to dehydrate precipitously after nucleation unless intracellular ice formation occurs. The predicted incidence of intracellular ice formation rapidly increases at ice nucleation temperatures below -4 degrees C and cell survival exhibits an optimum at a nucleation temperature of -6 degrees C. The ice nucleation temperature was found to have a great effect on the membrane phase behavior of the cells. The onset of the liquid crystalline to gel phase transition coincided with the ice nucleation temperature. In addition, nucleation at -3 degrees C resulted in a much more co-operative phase transition and a concomitantly lower residual conformational disorder of the membranes in the frozen state compared to samples that nucleated at -10 degrees C. These observations were explained by the effect of the nucleation temperature on the extent of cellular dehydration and intracellular ice formation. Amide-III band analysis revealed that proteins are relatively stable during freezing and that heat-induced protein denaturation coincides with an abrupt decrease in alpha-helical structures and a concomitant increase in beta-sheet structures starting at an onset temperature of approximately 48 degrees C.  相似文献   

6.
The effect of 5-n-alkylresorcinols, natural amphiphilic compounds, upon properties of phospholipid vesicles depends on their localization asymmetry. A significant increase of the bilayer permeability is observed when the title compounds are present only in the external medium. When these amphiphiles are preincorporated into the bilayer during its formation, the resulting liposomes effectively encapsulate water-soluble solutes which still remain in liposomes after 25 h. Additionally, the size of liposomes made of alkylresorcinol-phosphatidylcholine mixtures after eight cycles of freezing and thawing only (180-200 nm) is severalfold smaller than the size of vesicles prepared in a similar way from phospholipids only and the resulting liposomes are more homogeneous. These liposomes modified with alkylresorcinols are also stable during 40 day storage at both 4 degrees C and 20 degrees C, in contrast to control liposomes that already strongly aggregate after 10 days.  相似文献   

7.
A technique for successfully freezing, thawing and transferring rabbit embryos has been developed. Morula stage embryos were collected from super-ovulated female rabbits by flushing both oviducts and uterine horns with a tissue culture medium. Well developed, viable embryos were then transferred to freezing vials and a cryoprotectant, dimethyl sulfoxide (DMSO) was added in several steps to bring its final concentration to 1.6 molar. To freeze the embryos the temperature was lowered slowly (either 0.5 degrees C/min or 1.0 degrees C/min) to -80 degrees C at which point the vials were transferred directly to liquid nitrogen (-196 degrees C). Thawing was done at 8 degrees C/min. After thawing, phosphate buffered saline was added in a stepwise manner to dilute the DMSO. The thawed embryos were then cultured at 37 degrees C. Transfer of the embryos was accomplished by laparotomizing a pseudopregnant doe and introducing the embryos into the fimbriated ends of the oviducts. The 101 positively transferred embryos resulted in 45 implantations and 34 live born young.  相似文献   

8.
The purpose of this study was to extend previous work on the cryopreservation of channel catfish (Ictalurus punctatus) sperm. The objectives were to compare the effects of freezing and thawing on motility of sperm for: (1) 1 or 48-h exposure before freezing to 5% methanol and use of 0.5 or 0.25 mL straws; (2) 1 h or 5-day exposure before freezing to 5% methanol; (3) cooling at 45 or 3 degrees C/min; (4) thawing at 30, 40 or 50 degrees C using 5 or 10 s duration, and (5) cryopreservation with 5 or 10% methanol of samples from 50 males to analyze male-to-male variation. No differences were found in motility reduction for 1 or 48 h exposure times in 5% methanol, for use of 0.5 or 0.25 mL straws, or for 1 h or 5-day exposures in 5% methanol. A cooling rate of 45 degrees C/min resulted in lower motility reduction (33+/-9%) than a rate of 3 degrees C/min (83+/-13%) (P=0.002). A thawing temperature of 50 degrees C resulted in lower motility reduction (25+/-14%) than 30 degrees C (51+/-21%) or 40 degrees C (59+/-11%) (P=0.001). A thawing duration of 10 s resulted in lower motility reduction (38+/-12%) than a duration of 5 s (52+/-12%) (P=0.005), and there was an interaction between thawing temperature and duration (P=0.050). A concentration of 5% methanol resulted in lower motility reduction (43+/-17%) than 10% methanol (67+/-14%) (P=0.001). Regression analysis showed no relationship between motility before freezing and after thawing for 5% methanol (r2=0.012) or 10% methanol (r2=0.011).  相似文献   

9.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

10.
Cryoinjury in ram sperm was investigated by direct observation, using cryomicroscopy, to validate model hypotheses of freezing injury in such a specialized cell. Fluorescein diacetate was used to determine when during the freeze-thaw cycle the sperm membrane became permeable. In noncryoprotected sperm plasma membrane, integrity was maintained throughout the cooling and freezing process, but fluorescein leakage occurred during rewarming. The temperature of post-thaw permeabilization varied in relation to the minimum temperature reached during freezing; cells cooled to -10 degrees C retained fluorescence into the post-thaw temperature range of 9-24 degrees C (mean +/- SEM; 13.25 +/- 0.91 degrees C), whereas cells cooled to -20 degrees C lost fluorescence shortly after thawing (mean +/- SEM; 2.62 +/- 0.91 degrees C). Sperm cooled to 5 degrees C, but not frozen, retained fluorescence during rewarming up to 20-30 degrees C. The inclusion of glycerol and egg yolk in the freezing medium significantly and independently increased the post-thaw permeabilization temperature. Maintenance of fluorescence was also correlated with ability to resume motility after thawing. Sperm reactivation experiments were undertaken to examine deleterious effects of freezing upon the flagellar microtubular assembly. No direct evidence for such effects was obtained. Instead, a highly significant correlation between minimum freezing temperature and post-thaw temperature of initial reactivation was detected.  相似文献   

11.
Optimal freeze-thaw processes for dog semen will yield a maximal number of insemination doses from an ejaculate. The objectives of this study were to compare the effects of two straw sizes (0.25- and 0.5-mL French), two freezing rates (straws suspended 3.5 and 8 cm above liquid nitrogen) and two thawing rates (in water at 37 and 70 degrees C) upon post-thaw quality of dog semen, and to determine the best treatment combination. Quality was expressed in terms of the percentage progressively motile sperm 5 and 60 min after thawing and the percentage of abnormal acrosomes 5 min after thawing. One ejaculate from each of eight dogs was frozen. Two straws from each ejaculate were exposed to each of the eight treatment combinations. Data were analyzed by means of a repeated measures factorial analysis of variance and means compared using Bonferroni's test. Dog affected each response variable (P < 0.01). Neither straw size, nor freezing rate, nor thawing rate affected motility 5 min after thawing (P > 0.05). Half-milliliter straws resulted in 5.7% more progressively motile sperm 60 min after thawing and 6.5% fewer abnormal acrosomes than 0.25-mL straws (P < 0.05, n = 64). The percentage progressively motile sperm 60 min after thawing tended to be higher for semen thawed at 70 degrees C compared to 37 degrees C (P < 0.06, n = 64). Semen thawed in water at 70 degrees C had 6.6% fewer abnormal acrosomes than semen thawed in water at 37 degrees C (P < 0.05, n = 64). Freezing rate interacted with thawing rate (P < 0.05) in their effects upon acrosomal morphology and freezing 8 cm above liquid nitrogen and thawing in water at 70 degrees C was best. Dog semen should be frozen in 0.5-mL straws, 8 cm above liquid nitrogen and thawed in water at 70 degrees C.  相似文献   

12.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

13.
The purpose of the present study was to evaluate whether AFPs protect the heart from freezing and improve survival and viability in subzero cryopreservation. Hearts were subject to 5 preservation protocols; University of Wisconsin solution (UW) at 4 degrees C, UW at -1.3 degrees C without nucleation, UW at -1.3 degrees C with nucleation, UW AFP I (15 mg/cm(3)) at -1.3 degrees C with nucleation, and in UW AFP III (15 mg/cm(3)) at -1.3 degrees C with nucleation. Hearts were preserved for 24, 28, and 32 h, rewarmed and connected to the working isolated perfusion system. Data [heart rate (HR), coronary flow (CF), and developed pressure (dP)] was collected 30 and 60 min after reperfusion. Hearts preserved at -1.3 degrees C without AFPs froze, while hearts preserved with AFP did not freeze when nucleation was initiated and survived. Survival and dP of hearts preserved for 24h at -1.3 degrees C using AFP III was better than those preserved at 4 degrees C, (dP; 1.4 vs. 0.8, p<0.05). Four of six hearts and six of six hearts died when preserved at 4 degrees C for 28 and 32 h, respectively, all of the hearts that were preserved at -1.3 degrees C with or without AFPs survived after 28 h (n=18) and 32 h (n=18). CF was higher in UW -1.3 degrees C group without attempted nucleation than in AFP I and AFP III groups after 28 and 32 h (3.4 vs. 1.7, p<0.05, and 3.4 vs. 1.7, p<0.05, respectively). In conclusion, AFPs were found to protect the heart from freezing and improve survival and dP (AFP III) in prolonged subzero preservation.  相似文献   

14.
Mouse spermatozoa in 18% raffinose and 3.8% Oxyrase in 0.25 x PBS exhibit high motilities when frozen to -70 degrees C at 20-130 degrees C/min and then rapidly warmed. However, survival is <10% when they are frozen at 260 or 530 degrees C/min, presumably because, at those high rates, intracellular water cannot leave rapidly enough to prevent extensive supercooling and this supercooling leads to nucleation and freezing in situ (intracellular ice formation [IIF]). The probability of IIF as a function of cooling rate can be computed by coupled differential equations that describe the extent of the loss of cell water during freezing and from knowledge of the temperature at which the supercooled protoplasm of the cell can nucleate. Calculation of the kinetics of dehydration requires values for the hydraulic conductivity (Lp) of the cell and for its activation energy (Ea). Using literature values for these parameters in mouse sperm, we calculated curves of water volume versus temperature for four cooling rates between 250 and 2000 degrees C/min. The intracellular nucleation temperature was inferred to be -20 degrees C or above based on the greatly reduced motilities of sperm that underwent rapid cooling to a minimum temperature of between -20 and -70 degrees C. Combining that information regarding nucleation temperature with the computed dehydration curves leads to the conclusion that intracellular freezing should occur only in cells that are cooled at 2000 degrees C/min and not in cells that are cooled at 250-1000 degrees C/min. The calculated rate of 2000 degrees C/min for IIF is approximately eightfold higher than the experimentally inferred value of 260 degrees C/min. Possible reasons for the discrepancy are discussed.  相似文献   

15.
It was found that freezing of water in terms of homogeneous nucleation of ice never occurs even in ultra-clean micro-sized water droplets under normal conditions. More surprisingly, at sufficiently low supercoolings, foreign nano-particles exert no effect on the nucleation barrier of ice; it is as if they physically "vanished." This effect, called hereafter the "zero-sized" effect of foreign particles (or nucleators), leads to the entry of a so-called inverse homogeneous-like nucleation domain, in which nucleation is effectively suppressed. The freezing temperature of water corresponds to the transition temperature from the inverse homogeneous-like nucleation regime to foreign particle-mediated heterogeneous nucleation. The freezing temperature of water is mainly determined by (i) the surface roughness of nucleators at large supercoolings, (ii) the interaction and structural match between nucleating ice and the substrate, and (iii) the size of the effective surface of nucleators at low supercoolings. Our experiments showed that the temperature of -40 degrees C, commonly regarded as the temperature of homogeneous nucleation-mediated freezing, is actually the transition temperature from the inverse homogeneous-like nucleation regime to foreign particle-mediated heterogeneous nucleation in ultra-clean water. Taking advantage of inverse homogeneous-like nucleation, the interfacial tensions between water and ice in very pure water and antifreeze aqueous solutions were measured at a very high precision for the first time. The principles of freezing promotion and antifreeze and the selection for the biological ice nucleation and antifreeze proteins are obtained. The results provide completely new insights into freezing and antifreeze phenomena and bear generic implications for all crystallization systems.  相似文献   

16.
J Kristiansen 《Cryobiology》1992,29(5):575-584
Leakage of trapped carboxyfluorescein from DL-alpha-dipalmitoylphosphatidylcholine multilamellar liposomes (diameter 1-2 microns) in NaCl solutions was measured after rapid freezing to temperatures between -15 and -55 degrees C. Leakage was low after freezing between -15 and -35 degrees C, but increased steeply between -35 and -45 degrees C. From DSC measurements it was found that the increase in leakage was associated with two crystallization processes: Eutectic crystallization of NaCl and freezing of undercooled solvent trapped in the interior of the liposomes ("internal freezing"). Damage caused by the former process could effectively be prevented by small amounts of trehalose (1% less than or equal to w less than or equal to 1.5%). Trehalose in these concentration also decreased damage due to internal freezing, but to a minor degree. In addition to these damaging transitions, a time-dependent process was found to cause leakage from the liposomes at -25 degrees C. The association between leakage and thermal activity suggests that DSC supplements cryomicroscopy and leakage measurements in the characterization of cryostability of liposomes.  相似文献   

17.
The effects of different freezing and thawing rates on the post-thaw motility and membrane integrity of boar spermatozoa, processed as split samples in Maxi-straws or flat PET-plastic packages (FlatPack) were studied. A programmable freezing device was used to obtain freezing rates of either 20, 50 or 80 degrees C/min. Thawing of the samples was performed in a bath of circulating water; for 40s at 50 degrees C or 27s at 70 degrees C for Maxi-straws and 23s at 35 degrees C, 13s at 50 degrees C or 8s at 70 degrees C for the FlatPacks. Sperm motility was assessed both visually and with a computer assisted semen analysis (CASA) apparatus, while plasma membrane integrity was assessed using the fluorescent probes Calcein AM and ethidium homodimer-1. Temperature changes during freezing and thawing were monitored in both forms of packaging. Values for motile spermatozoa, sperm velocity and lateral head displacement variables were significantly (p<0.05) higher for samples frozen in FlatPacks than in Maxi-straws, with superior results at higher thawing rates. Freezing at 50 degrees C/min yielded better motility than 20 or 80 degrees C/min, although the effect was rather small. Neither freezing rate nor thawing rate had any effect on membrane integrity (p>0.05). A significant boar effect was seen for several parameters. The most striking difference in temperature courses between containers was a 4-5-fold lowering of the thawing rate, between -20 and 0 degrees C, in the center of the Maxi-straw, compared with the FlatPack. This is apparently due to the insulating effect of the thawed water in the periphery of the Maxi-straw. The improvement in sperm motility seen when using the FlatPack appears to be related to the rapid thawing throughout the sample, which decreases the risk of cell damage due to recrystallization during thawing. Since sperm motility patterns have been reported to be correlated with fertility both in vitro and in vivo it is speculated that the use of the FlatPack might improve the results when using frozen-thawed boar spermatozoa for artificial insemination.  相似文献   

18.
The effect of various thawing velocities on the motility and acrosomal maintenance of ram spermatozoa frozen at 20 degrees C/min (optimal) or 2 degrees C/min (suboptimal) was studied. The freeze-thaw motility and the percentage of intact acrosomes of spermatozoa frozen at 20 degrees C/min increased progressively with the thawing velocity. In semen frozen at 2 degrees C/min, motility of spermatozoa and the percentage of intact acrosomes declined drastically when the thawing velocity obtained in air at 20 degrees C was increased by thawing in water at 20 degrees C. Thawing at higher temperatures markedly increased both motility and acrosomal preservation, but the best results with semen frozen at 2 degrees C/min were lower than those obtained with semen frozen at 20 degrees C/min. The optimal freeze-thaw conditions for semen protected by 4% glycerol were freezing at 20 degrees C/min and thawing in water at 60 or 80 degrees C for 8 or 5 sec, respectively. Semen collected from rams exposed to a decreasing photoperiod exhibited higher motility after freezing and thawing than those exposed to an increasing photoperiod. However, there was no effect on acrosomal preservation after freezing at 20 degrees C/min.  相似文献   

19.
The changes in morphology of Penicillium expansum Link and Phytophthora nicotianae Van Breda de Haan during freezing and thawing in a growth medium with and without the cryoprotective additive glycerol were examined with a light microscope fitted with a temperature-controlled stage. Viability of 0.5-1.0 mm diameter colonies of both fungi was determined after equivalent rates of cooling to -196 degrees C in the presence or absence of glycerol. In P. expansum shrinkage occurred in all hyphae at rates of cooling of less than 15 degrees C min-1; at faster rates intracellular ice nucleation occurred. The addition of glycerol increased the rate of cooling at which 50% of the hyphae formed intracellular ice from 18 degrees C min-1 to 55 degrees C min-1. This species was particularly resistant to freezing injury and recovery was greater than 60% at all rates of cooling examined. At rapid rates of cooling recovery occurred in hyphae in which intracellular ice had nucleated. In contrast, during the cooling of Ph. nicotianae in the growth medium, shrinkage occurred and no samples survived on thawing from -196 degrees C. However, on the addition of glycerol, shrinkage during freezing decreased and viable hyphae were recovered upon thawing; at rates of cooling over 10 degrees C min-1 the loss of viability was related to glycerol-induced osmotic shrinkage during cooling rather than to the nucleation of intracellular ice.  相似文献   

20.
The effect of temperature on the activation energies of mitochondrial enzymes of the yeast Saccharomyces cerevisiae was examined. Non-linear Arrhenius plots with discontinuities in the temperature range 14-19 degrees C and 19-22 degrees C were observed for the respiratory enzymes and mitochondrial ATPase (adenosine triphosphatase) respectively. A straight-line Arrhenius plot was observed for the matrix enzyme, malate dehydrogenase. The activation energies of the enzymes associated with succinate oxidation, namely, succinate oxidase, succinate dehydrogenase and succinate-cytochrome c oxidoreductase, were in the range 60-85kJ/mol above the transition temperature and 90-160kJ/mol below the transition temperature. In contrast, the corresponding enzymes associated with NADH oxidation showed significantly lower activation energies, 20-35kJ/mol above and 40-85kJ/mol below the transition temperature. The discontinuities in the Arrhenius plots were still observed after sonication, treatment with non-ionic detergents or freezing and thawing of the mitochondrial membranes. Discontinuities for cytochrome c oxidase activity were only observed in freshly isolated mitochondria, and no distinct breaks were observed after storage at -20 degrees C. Mitochondrial ATPase activity still showed discontinuities after sonication and freezing and thawing, but a linear plot was observed after treatment with non-ionic detergents. The results indicate that the various enzymes of the respiratory chain are located in a similar lipid macroenvironment within the mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号