首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Quantitative pollen-based land-cover reconstruction covering the last 4,000 years was performed using transformation coefficients derived from a modern pollen land-cover database and a palynological record from an annually laminated sequence in Lake Rõuge Tõugjärv. Proportions of four land-cover classes characteristic of cultural landscape were reconstructed: habitation area, arable land, grassland and woodland. A land-use change model using CA_Markov analysis was applied for spatial reconstructions for seven periods: 600 b.c., a.d. 300, 800, 1200, 1700, 1870 and 1940. Historical maps from a.d. 1684, 1870–1899 and 1935 were used for calibration of quantitative estimates and to validate spatial reconstructions. The accuracy of the estimates depends on the availability of modern analogues and differs among land-cover classes, being highest for classes with directly connectable pollen indicator types (arable land, forest) and lowest for settlement areas. Spatial reconstructions produced by the CA_Markov land-cover change model show moderate accordance with historical data. However, the large uncertainties in land-cover input data must be considered in the evaluation of the KIA results of the spatial model. Permanent low intensity, rural land-use in the Rõuge area started at the beginning of the Bronze Age (c. 1800 b.c.). The major increase in the extent of rural land-use took place at the beginning of the 13th century and culminated during the 19th century when c. 90% of the RSAP of Rõuge Tõugjärv was open. During the last century, rural land-use decreased constantly.  相似文献   

2.
Aims To validate the POLLSCAPE simulation model of pollen dispersal and deposition, and evaluate the effect of factors such as pollen productivity, wind speed and regional plant abundance, using a data set of ad 1800 pollen assemblages and historical land cover data. Location Denmark. Methods ad 1800 land cover from historical maps is digitized for 2000 m radii around 30 Danish lakes (3.5–33 ha). The simulation model POLLSCAPE is used to predict sedimentary pollen assemblages in the lakes from the plant abundance data inferred from these maps, with different model parameter settings for wind speed, pollen productivity, regional pollen loading, etc. The model predictions are compared with observed ad 1800 pollen assemblages from the lake sediment records. Furthermore, pollen productivity is estimated from the ad 1800 pollen and vegetation data using the Extended R‐value model. Results Generally the model reproduces the patterns in the observed pollen assemblages, and for most pollen types there are significant correlations between observed and predicted pollen proportions. The pollen proportions predicted by the POLLSCAPE model are sensitive to the pollen productivity estimates used, the regional background pollen loading and average wind speed. There is a difference in background pollen loading between eastern and western Denmark, especially of Calluna pollen. The fit between predicted and observed pollen assemblages is best at wind speeds around 2.5 m s?1, and decreases rapidly at lower wind speeds. The pollen productivity estimates from the ad 1800 data set are comparable with estimates from moss polsters in modern analogues of traditional cultural landscapes in Sweden and Norway. Main conclusions The POLLSCAPE model reproduces the patterns in the observed pollen assemblages from the lakes well, considering the uncertainty in the historical plant abundance data. This study indicates that the simulation model can be a useful tool for investigating relationships between vegetation and pollen composition, but also that the simulated pollen proportions are sensitive to the pollen productivity estimates, the regional background and to wind speed.  相似文献   

3.
The two major aims of this study are (1) To test the performance of the Landscape Reconstruction Algorithm (LRA) to quantify past landscape changes using historical maps and related written sources, and (2) to use the LRA and map reconstructions for a better understanding of the origin of landscape diversity and the recent loss of species diversity. Southern Sweden, hemiboreal vegetation zone. The LRA was applied on pollen records from three small bogs for four time windows between AD 1700 and 2010. The LRA estimates of % cover for woodland/forest, grassland, wetland, and cultivated land were compared with those extracted from historical maps within 3‐km radius around each bog. Map‐extracted land‐use categories and pollen‐based LRA estimates (in % cover) of the same land‐use categories show a reasonable agreement in several cases; when they do not agree, the assumptions used in the data (maps)‐model (LRA) comparison are a better explanation of the discrepancies between the two than possible biases of the LRA modeling approach. Both the LRA reconstructions and the historical maps reveal between‐site differences in landscape characteristics through time, but they demonstrate comparable, profound transformations of the regional and local landscapes over time and space due to the agrarian reforms in southern Sweden during the 18th and 19th centuries. The LRA was found to be the most reasonable approach so far to reconstruct quantitatively past landscape changes from fossil pollen data. The existing landscape diversity in the region at the beginning of the 18th century had its origin in the long‐term regional and local vegetation and land‐use history over millennia. Agrarian reforms since the 18th century resulted in a dramatic loss of landscape diversity and evenness in both time and space over the last two centuries leading to a similarly dramatic loss of species (e.g., beetles).  相似文献   

4.
Zehui Jiang 《Plant biosystems》2013,147(2):127-131
Abstract

A pollen diagram from a small lake, Kutulahdenlampi, in northern Finland is interpreted in terms of the development of forest vegetation during the Holocene. The abundance of each of the forest taxa is considered independently by means of pollen accumulation rates (PARs), using as the reference material, long term average pollen deposition values monitored by a network of pollen traps. Particular attention is paid to the arrival of spruce and to the species in the original forests that this newcomer replaces. A model of pollen dispersal and deposition developed by Sugita is used to estimate the area around the lake that the pollen assemblage is most clearly reflecting. This relevant source area of pollen (RSAP), for the present day situations is c. 1,500 m. Pollen loadings calculated for a simulated landscape that mimics (i) that of the present day and (ii) for the situation at 8,000 BP (as deduced from the PARs) are compared with the pollen assemblages from the diagram at those points in time, and are seen to be compatible. The advantages of combining PAR and modelling to look at the spatial scale of vegetation reconstructions are discussed.  相似文献   

5.
Pollen analyses and related plant macrofossil records are presented from short cores from nine North African lakes in the EU-funded CASSARINA project. Terrestrial pollen reflects human impact on the vegetation and landscape over the last 150–100 years. Pollen changes, aided by radiometric dating, could be correlated with historical developments. The chronology of the landscape changes date other biostratigraphical records reflecting changes in the aquatic ecosystems.Three lakes in Morocco show gradually intensifying land-use over the last century. Accelerated technological development and landscape modification over the last 20 years culminated in one of the lakes being drained and cultivated during the project period. In Tunisia, a nationally unique acid-water lake is threatened by water withdrawal for increased catchment cultivation. The landscape around two other lakes is being increasingly cultivated and urbanised, and water withdrawal to support this has resulted in deleterious effects on the aquatic ecosystems, particularly at the internationally famous Garaet El Ichkeul where reed-marshes and macrophyte beds have been lost. The three lakes in the Egyptian Nile Delta are in the same hydrological system and show parallel changes in the balance between saltmarsh and reed-marsh. Control of Nile floods and year-round irrigation led to marked increases in cultivation in the delta region since ca. 1920. The Aswan High Dam (1964) had little detectable further effect. Documented planting of dates, palms, and olives and of introduced Casuarina and Eucalyptus trees provided a chronology to supplement the unsatisfactory radiometric dating of the sediments in this low-rainfall area.  相似文献   

6.
The abundance and biomass of ciliates, rotifers, cladocerans and copepods were studied in Lake Peipsi and Lake Võrtsjärv, both of which are shallow, turbid and large. Our hypothesis was that in a large shallow eutrophic lake, the ciliates could be the most important zooplankton group. The mean metazooplankton biomass was higher in Peipsi than in Võrtsjärv (mean values and SD, 1.8 ± 0.7 and 1.3 ± 0.6 mg WM l?1). In Peipsi, the metazooplankton biomass was dominated by filtrators that feed on large-sized phytoplankton and are characteristic of oligo-mesotrophic waters. In Võrtsjärv, the metazooplankton was dominated by species characteristic of eutrophic waters. The planktonic ciliates in both lakes were dominated by oligotrichs. The biomass of ciliates was much greater in Võrtsjärv (mean 2.3 ± 1.4 mg WM l?1) than in Peipsi (0.1 ± 0.08 mg WM l?1). Ciliates formed about 60% of the total zooplankton biomass in Võrtsjärv but only 6% in Peipsi. Thus, the food chains in the two lakes differ: a grazing food chain in Peipsi and a detrital food-chain in Võrtsjärv. Consequently, top-down control of phytoplankton can be assumed to be much more important in Peipsi than in Võrtsjärv. When the detrital food chain prevails, the planktonic ciliates become the most important zooplankton group in shallow, eutrophic and large lake. Neglecting protozooplankton can result in serious underestimates of total zooplankton biomass since two-thirds of the zooplankton biomass in Võrtsjärv comprises ciliates.  相似文献   

7.
Information on past land cover in terms of absolute areas of different landscape units (forest, open land, pasture land, cultivated land, etc.) at local to regional scales is needed to test hypotheses and answer questions related to climate change (e.g. feedbacks effects of land-cover change), archaeological research, and nature conservancy (e.g. management strategy). The palaeoecological technique best suited to achieve quantitative reconstruction of past vegetation is pollen analysis. A simulation approach developed by Sugita (the computer model POLLSCAPE) which uses models based on the theory of pollen analysis is presented together with examples of application. POLLSCAPE has been adopted as the central tool for POLLANDCAL (POLlen/LANdscape CALibration), an international research network focusing on this topic. The theory behind models of the pollen–vegetation relationship and POLLSCAPE is reviewed. The two model outputs which receive greatest attention in this paper are the relevant source area of pollen (RSAP) and pollen loading in mires and lakes. Six examples of application of POLLSCAPE are presented, each of which explores a possible use of the POLLANDCAL tools and a means of validating or evaluating the models with empirical data. The landscape and vegetation factors influencing the size of the RSAP, the importance of pollen productivity estimates (PPEs) for the model outputs, the detection of small and rare patches of plant taxa in pollen records, and quantitative reconstructions of past vegetation and landscapes are discussed on the basis of these examples. The simulation approach is seen to be useful both for exploring different vegetation/landscape scenarios and for refuting hypotheses.  相似文献   

8.
Relevant source area of pollen (RSAP) and pollen productivity for 11 key taxa characteristic of the pasture woodland landscape of the Jura Mountains, Switzerland, were estimated using pollen assemblages from moss polsters at 20 sites. To obtain robust pollen productivity estimates (PPEs), we used vegetation survey data at a fine spatial-resolution (1 × 1 m2) and randomized locations for sampling sites, techniques rarely used in palynology. Three Extended R value (ERV) submodels and three distance-weighting methods for plant abundance calculation were applied. Different combinations of the submodels and distance-weighting methods provide slightly different estimates of RSAP and PPEs. Although ERV submodel 1 using 1/d (d = distance in meters) best fits the dataset, PPE values for heavy pollen types (e.g. Abies) were sensitive to the method used for distance-weighting. Taxon-specific distance-weighting methods, such as Prentice’s model, emphasize the intertaxonomic differences in pollen dispersal and deposition, and are thus theoretically sound. For the dataset obtained in this project, Prentice’s model was more appropriate than other distance-weighting methods to estimate PPEs. Most of the taxa have PPEs equal to (Fagus, Plantago media and Potentilla-type), or higher (Abies, Picea, Rubiaceae and Trollius europaeus) than Poaceae (PPE = 1). Acer, Cyperaceae, and Plantago montana-type are low pollen producers. This set of PPEs will be useful for reconstructing heterogeneous, mountainous pasture woodland landscapes from fossil pollen records. The RSAP for moss polsters in this semi-open landscape region is ca. 300 m.  相似文献   

9.
Aim To investigate the long‐term changes in aquatic vegetation in a lowland, shallow lake, and to assess the relationship between aquatic vegetation and natural and anthropogenic catchment changes. Location Gundsømagle Sø, Zealand, Denmark: a shallow (mean depth 1.2 m), hypereutrophic lake (mean annual total phosphorus (TP) c. 700 μg TP L?1) located in a predominantly agricultural catchment (88% cultivated land). The lake is presently devoid of macrophytes. Methods One hundred and forty‐seven contiguous samples from a sediment core (taken in 2000) were analysed for macrofossil remains together with loss‐on‐ignition and dry weight. From an earlier sediment core (taken in 1992), 67 samples were analysed for pollen and the two cores were correlated using the ignition residue profiles. Core chronology was determined by 210Pb and 137Cs dating of the recent lake sediments, while older sediments were dated by pollen‐stratigraphical correlation, as 14C dating proved problematical. Aquatic macrofossil abundance was used to reconstruct past changes in the lake's plant community and water‐level. The contemporary catchment land‐use change was inferred from sedimentary pollen data, and soil erosion to the lake was deduced from the minerogenic content of the lake sediments. Results The macrofossil record covers the last 7000 years, but aquatic plant remains were scarce prior to c. 1300 bc . After this date the abundance of submerged and emergent macrophyte remains increased dramatically, paralleled by an increase in sediment minerogenic matter and non‐arboreal pollen (NAP). Aquatic plant remains were abundant for more than 3000 years until the mid 1900s. Macrofossils of Linum usitatissimum (L.) (flax) and high pollen percentages of ‘Cannabis type’ (hemp) were recorded in periods between c. 1150 bc and 1800 ad . Main conclusions Our study suggests that, between c. 5000 bc and 1300 bc , the submerged plant community was confined to the littoral zone. From 1300 bc onwards, the submerged macrophyte vegetation expanded rapidly across the lake bed, presumably as a response to lake shallowing caused by a combination of climatic‐induced water‐level lowering and enhanced erosional infilling of the lake basin due to intensified anthropogenic activities in the catchment. The lake was meso‐eutrophic and had an extensive and diverse aquatic flora for more than 3000 years, until the middle of the twentieth century. In periods between c. 1150 bc and 1800 ad , the lake experienced direct anthropogenic impact from retting of fibre plants (Linum and Cannabis). Over the last 200 years, erosional infilling of the lake basin increased drastically, probably as a result of agricultural intensification. In the twentieth century, the lake was strongly affected by nutrient enrichment from both point sources (sewage from built‐up areas) and diffuse agricultural run‐off which led to hypertrophic conditions and the collapse of the submerged vegetation c. 1950–60. The concept of ‘naturalness’ and the implications for lake conservation are discussed.  相似文献   

10.
Biostratigraphic diatom analyses were carried out on a short sediment core from the large shallow-water Lake Võrtsjärv, Estonia, in order to relate the diatom composition to the instrumental water level record. We dated the sediment core by radiometric methods (210Pb, 137Cs, 241Am) and spheroidal fly-ash particle abundance chronology and evaluated the statistical significance of the relationships between the percentage of planktonic diatoms and the water level continuously monitored since 1871. Before the 1960s, the percentage of planktonic diatoms in the sediment showed quite strong positive relationship to water level. The impact of eutrophication after the 1960s presumably masked the influence of water level changes on the diatom community. In addition, statistical analysis of the upper part of the sediment core (1970—present day) together with measured limnological parameters of the lake showed that water transparency had the strongest influence on diatoms, while temperature, pH and alkalinity had lesser impacts. Our study shows that the planktonic:periphytic diatom ratio in the sediment can be used to track overall trends of the lake-level changes in Lake Võrtsjärv before the onset of cultural eutrophication; however, the results have to be interpreted carefully, taking into consideration other possible limnological factors such as water transparency, nutrients and wind.  相似文献   

11.
The sediment stratigraphy of a medium-sized mixotrophic lake (Ruila) situated below the highest shoreline of the Baltic Ice Lake in the West-Estonian Lowland is described. The lake is without natural inlets our outlets. The reconstruction of vegetation and land-use history based on pollen data, combined with available archaeological data and detailed 14C dating allows us to give a provisional reconstruction of the temporal and spatial pattern of natural and human induced environmental changes in north-west Estonia during the Holocene. Both radiocarbon dates derived from terrestrial macrofossil dating by accelerator mass spectrometry (AMS) and conventional dating of bulk lake sediment are discussed. The isolation of the lake basin from the Yoldia Sea took place ca. 9700 cal B. C. The Ancylus Lake transgression at ca. 8400 cal B. C. did not reach the basin, but caused a ground water rise, seen in the sediment stratigraphy of the lake. The first signs of human impact on the pollen record appear ca. 5400 cal B. C. (Late Mesolithic). The history of arable farming has been divided into three periods: 1) introduction of crop cultivation and animal husbandry (1500 cal B. C. – A. D. 500); 2) establishment of animal husbandry A. D. 500–1000) and 3) establishment of crop cultivation and intensive cattle breeding (A. D. 1000–today). Due to unfavourable eda-phic conditions the introduction of arable farming was delayed for more than 1000 years compared with elsewhere on the north coast of Esotnia, and intensity of land-use never reached the same proportion as in these areas. Received August 15, 2001 / Accepted August 5, 2002 Correspondence to: Leili Saarse  相似文献   

12.
Aim We aim to compare fine resolution pollen data from a former seasonal pasture with historical evidence for grazing and woodland use. We discuss the complexities and benefits of integrating qualitative and quantitative information, and the implications for studies of past wood–grazing interactions and their relevance to current conservation management. Location Corries is an abandoned farm township in Scotland's Western Highlands. Methods Two sources were used: (1) pollen evidence from a former seasonal pasture, analysed at c. 20‐year intervals and dated using 14C and 210Pb, provides a c. 1100‐year local vegetation and land‐use history; (2) written sources document resource regulation and changing socio‐economic circumstances at local to national scales over the last c. 400 years. Results Each source records woodland and livestock management at different spatial and temporal scales: written evidence provides a clearer understanding of general (estate) rather than farm‐scale changes, while small pollen basins record localized woodland–grazing dynamics, which can be difficult to extrapolate to the landscape scale. Both sources indicate a dynamic wood–grazing balance and together provide clearer evidence for incentives and drivers controlling this relationship. The first palynological phase of woodland incursion (ad c. 1210–1490) pre‐dates the surviving written records, but a second (ad c. 1680–1760) occurs during a period of increasing market value for cattle, when farmers may have increased grazing despite regulations to protect woods. The site is not representative of grazing intensification associated with the introduction of extensive sheep farming because the farmer protected the woods (ad c. 1760–1880) until they were cleared (ad c. 1880–1920) for quarrying (ad 1885–1904), which accounts for the limited palynological evidence for grazing. Main conclusions Written evidence for past stocking levels is too fragmentary and ambiguous to allow long‐term quantitative analysis, but a local historical context is important for interpreting local pollen records. Management decisions that determined grazing–woodland interactions were shaped by changing values, markets, agricultural practices and regulatory structures, which can result in nonlinear relationships between stocking levels and woodland continuity. Many woods were managed for multiple purposes in the past and promoting natural processes or pursuing pre‐anthropogenic baselines will result in the erosion of cultural features that have shaped present landscape values.  相似文献   

13.
Hydrological changes have the greatest impact on shallow lakes where they alter the water volume and lake depth noticeably. Dissolved organic carbon (DOC), which is markedly affected by hydrological factors, has an important role in many biogeochemical processes. The DOC load supplied to Lake Võrtsjärv, the second largest lake in Estonia, was studied on the scale of the subcatchments discharging into the lake. Daily discharges and biweekly or monthly DOC concentrations were measured close to the river outlets over the years 1990–2002. The stream flow data were separated into groundflow and surface flow by applying local minimum and recursive digital filtering methods. Constituent load estimation software, LOADEST, was used to estimate DOC concentrations and load. LOADEST performed well for three of the four rivers. The total estimated DOC load to Võrtsjärv from all four main rivers varied from 1,320 to 4,934 t year?1. The average annual load over the 13-year period was 3,265 t year?1 or 1.18 g C m?2 year?1. Baseflow separation analysis indicated that the DOC load originating from groundflow contributed 79% and 69% of the total load according to the digital filter and local minimum methods, respectively. The results of our study demonstrate the utility of linking the rating-curve method and baseflow separation to assess the allochthonous DOC load to Võrtsjärv both currently and under changing climatic conditions.  相似文献   

14.
This study demonstrates the power of multiproxy palaeolimnological analyses in investigating environmental changes in the Lake Kooraste Linajärv ecosystem through historical time in response to flax retting. Flax retting history was proven by applying pollen and macrofossil evidence and by using several biotic and geochemical proxies on a sediment core. Continuous findings of flax pollen and macrofossil remains in lake sediments were considered as strong evidence for the occurrence of retting. Analyses of the well-dated sediment core show the consequences of flax retting in the lake. As a result, the once clear soft water oligotrophic endorheic lake with limited sedimentation has turned into a hypertrophic high-sedimentation lake with anoxic bottom water, strong stratification and intense water blooms. Despite the fact that flax retting was forbidden in Estonia around ad 1950s and retting has not occurred over the last six decades, anthropogenic alterations were so pervasive in the past, that they have prevented any lake water improvements until the present-day.  相似文献   

15.
Aim The objective of this paper is to explore the relationships that exist between vegetation and modern pollen rain in the open, largely treeless landscape of subarctic Greenland. The implications of these results for the interpretation of fossil pollen assemblages from the time of the Norse landnám are then examined. Location The study area is the sheep farming district of Qassiarsuk in the subarctic, subcontinental vegetational and climatic zone of southern Greenland (61° N, 45° W). Between c.ad 1000–1500 this region was contained within the Norse Eastern Settlement. Methods Detrended Correspondence Analysis (DCA) of harmonized plant–pollen data sets is used to compare plant cover in 64 vegetation quadrats with pollen assemblages obtained from moss polsters at matching locations. Presence/absence data are also used to calculate indices of association, over‐ and under‐representation for pollen types. Results Good correspondence between paired vegetation–pollen samples occurs in many cases, particularly in locations where Salix glaucaBetula glandulosa dwarf shrub heath is dominant, and across herbaceous field boundaries and meadows. Pollen samples are found to be poor at reflecting actual ground cover where ericales or Juniperus communis are the locally dominant shrubs. Dominant or ubiquitous taxa within this landscape (Betula, Salix and Poaceae) are found to be over‐represented in pollen assemblages, as are several of the ‘weeds’ generally accepted as introduced by the Norse settlers. Main conclusions Due to their over‐representation in the pollen rain, many of the Norse apophytes and introductions (e.g. Rumex acetosa and R. acetosella) traditionally used to infer human activity in Greenland should be particularly sensitive indicators for landnám, allowing early detection of Norse activity in fossil assemblages. Pteridophyte spores are found to be disassociated with the ground cover of ferns and clubmosses, but are over‐represented in pollen assemblages, indicating extra‐local or regional sources and long residence times in soil/sediment profiles for these microfossils. A pollen record for Hordeum‐type registered in close proximity to a field containing barley suggests that summer temperatures under the current climatic regime are, at least on occasion, sufficient to allow flowering.  相似文献   

16.
The role of pelagic cladoceran communities is discussed on the basis of a comparative study conducted in two Estonian lakes, the moderately eutrophic Lake Peipsi (Ntot 700, Ptot 40 μg l?1 as average of ice-free period of 1997–2003) and in a strongly eutrophic Lake Võrtsjärv (Ntot 1600, Ptot 54 μg l?1). The cladoceran community was found to reflect the differences in the trophic state of these lakes. In L. Peipsi, characteristic species of oligo-mesotrophic and eutrophic waters co-dominated (making up 20% or more of total zooplankton abundance or biomass), whereas in L. Võrtsjärv only species of eutrophic waters occurred. In L. Peipsi, the dominant cladocerans were Bosmina berolinensis and Daphnia galeata, while Chydorus sphaericus was the most abundant cladoceran in L. Võrtsjärv. The cladocerans of L. Peipsi (mean individual wet weight 25 μg) were significantly (threefold) larger than those of L. Võrtsjärv (8 μg). The mean wet biomass of cladocerans was higher and total cladoceran abundance was lower in L. Peipsi compared to L. Võrtsjärv (biomass varied from 0.133 to 1.570 g m?3; mean value 0.800 g m?3 in L. Peipsi and from 0.201 to 0.706 g m?3, mean 0.400 g m?3 in L. Võrtsjärv; the corresponding data for abundances were: 8,000–43,000 ind. m?3, mean 30,000 ind. m?3 for L. Peipsi, 50,000–100,000, mean 52,000 ind. m?3 for L. Võrtsjärv). Based upon differences in body size, cladocerans were more effective transporters of energy in L. Peipsi than in L. Võrtsjärv. Cladocerans proved to be informative indicators of the trophic status and of the efficiency of the food web in studied lakes.  相似文献   

17.
Inter-island paleoecological comparisons have provided useful information concerning the role of humans vs. background-level disturbance in tropical ecosystems. Major ecological changes have occurred since human arrival in Madagascar, the West Indies, the Hawaiian Islands, and elsewhere. Prehuman vegetation changes and disturbances have also been documented for many islands. Instructive inter-island similarities and differences have been detected in the chronology, distribution, and extent of human activities, vegetation changes, and biotic extinctions. The earliest stratigraphic proxy evidence for initial human impacts (including increased charcoal particle influx to sediments, first appearance of exotic pollen, increase in ruderal pollen, and paleolimnological evidence for cultural eutrophication of lake waters) generally confirm but sometimes predate the earliest conventional archaeological evidence for human activity. Carefully chosen sites permitting the close integration of palynological, paleontological, and archaeological data from a variety of island settings with differing geographic and historical contingencies can enable investigators to more fully evaluate the importance of a range of human and ecological variables in determining the overall character and dynamics of ecosystems.  相似文献   

18.
More than 20-year monitoring of Estonian rivers reveals that the loading of nitrogen to large shallow lakes Peipsi (3,555 km2, mean depth 7.1 m) and Võrtsjärv (270 km2, mean depth 2.8 m) decreased substantially in the 1990s. Phosphorus loading decreased to a much smaller extent than nitrogen loading. In L. Võrtsjärv both N and P concentrations followed the decreasing trends of loading, which show the high sensitivity of large shallow lakes to catchment processes. Our study showed a positive relationship between P content in sediments and the relative depth of the lake. Assumingly the resilience of a lake in responding to the reduction of nutrient loading decreases together with the decrease of its relative depth. In L. Peipsi the concentration of P has not decreased since the 1990s. Our data show indirectly that P loading from Russia to L. Peipsi may have increased. The N/P ratio has decreased in both lakes. Cyanobacterial blooms have been common in both lakes already at the beginning of the 20th century. The blooms disappeared during heavy nitrogen loading in the 1980s but started again in L. Peipsi in recent years together with the drop of the N/P ratio. In L. Võrtsjärv the N/P ratio is higher and the ecosystem is more stable although the share of N2-fixing cyanobacteria increased from the 1990s. Reappearing cyanobacterial blooms in L. Peipsi have caused fish-kills in recent years. In L. Peipsi summer/autumn fish-kills during water-blooms are a straightforward consequence of reduced nitrogen level at remaining high phosphorus level while in L. Võrtsjärv the climatic factors affecting water level are more critical––at low water level winter fish-kills may occur. In L. Võrtsjärv nutrient loading has decreased and water quality has improved, present ecological status seems to be mostly controlled by climatic factors through changes of water level. The most important measure to improve water quality in L. Peipsi would be the reduction of phosphorus loading from both Estonian and Russian subcatchments.  相似文献   

19.
Abstract. Since the introduction of ‘potential natural vegetation’ (PNV) as a concept in vegetation science by Tüxen (1956), many PNV-maps with different scales have been made. Tüxen emphasized the great value of PNV-maps for different purposes in land use, landscape planning and nature conservation, in particular with regard to forestry, agriculture and landscape management. Different aspects are discussed in order to examine the validity and applicability of PNV-maps in landscape planning and nature conservation. PNV-maps are useful for the differentiation of natural and landscape units on a small scale (< 1 : 100 000). However, maps of the potential natural vegetation are less useful for purposes of detailed planning on larger scales (> 1 : 100 000). Problems arise, for example, from the often highly hypothetical character of the construction and the practice of taking remnants of ‘natural’ vegetation as a reference object for the PNV. With regard to the goals of modern landscape planning and nature conservation purposes (e.g. conserving biodiversity in the cultural landscape of Central Europe) the exact documentation of the actual real vegetation (ARV) on intermediate and large scales gives much more detailed information than a hypothetical PNV.  相似文献   

20.
Aim Interpretation of fossil pollen assemblages may benefit greatly from comparisons with modern palynological and vegetation analogues. To interpret the full‐ and late‐glacial vegetation in eastern‐central Europe we compared fossil pollen assemblages from this region with modern pollen assemblages from various vegetation types in southern Siberia, which presumably include the closest modern analogues of the last‐glacial vegetation of central Europe. Location Czech and Slovak Republics (fossil pollen assemblages); Western Sayan Mountains, southern Siberia (modern pollen assemblages). Methods Eighty‐eight modern pollen spectra were sampled in 14 vegetation types of Siberian forest, tundra and steppe, and compared with the last‐glacial pollen spectra from seven central European localities using principal components analysis. Results Both full‐ and late‐glacial pollen spectra from the valleys of the Western Carpathians (altitudes 350–610 m) are similar to modern pollen spectra from southern Siberian taiga, hemiboreal forest and dwarf‐birch tundra. The full‐glacial and early late‐glacial pollen spectra from lowland river valleys in the Bohemian Massif (altitudes 185–190 m) also indicate the presence of patches of hemiboreal forest or taiga. Other late‐glacial pollen spectra from the Bohemian Massif suggest an open landscape with steppe or tundra or a mosaic of both, possibly with small patches of hemiboreal forest. Main conclusions Our results are consistent with the hypothesis that during the full glacial and late glacial, the mountain valleys of the north‐western Carpathians supported taiga or hemiboreal forest dominated by Larix, Pinus cembra, Pinus sylvestris and Picea, along with some steppic or tundra formations. Forests tended to be increasingly open or patchy towards the west (Moravian lowlands), gradually passing into the generally treeless landscape of Bohemia, with possible woodland patches in locally favourable sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号