首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bulk of familial breast cancer risk (∼70%) cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH). Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.  相似文献   

2.
The most important cause of developing hereditary breast cancer is germline mutations occurring in breast cancer (BCs) susceptibility genes, for example, BRCA1, BRCA2, TP53, CHEK2, PTEN, ATM, and PPM1D. Many BC susceptibility genes can be grouped into two classes, high- and low-penetrance genes, each of which interact with multiple genes and environmental factors. However, the penetrance of genes can also be represented by a spectrum, which ranges between high and low. Two of the most common susceptibility genes are BRCA1 and BRCA2, which perform vital cellular functions for repair of homologous DNA. Loss of heterozygosity accompanied by hereditary mutations in BRCA1 or BRCA2 increases chromosomal instability and the likelihood of cancer, as well as playing a key role in stimulating malignant transformation. With regard to pathological features, familial breast cancers caused by BRCA1 mutations usually differ from those caused by BRCA2 mutations and nonfamilial BCs. It is essential to acquire an understanding of these pathological features along with the genetic history of the patient to offer an individualized treatment. Germline mutations in BRCA1 and BRCA2 genes are the main genetic and inherited factors for breast and ovarian cancer. In fact, these mutations are very important in developing early onset and increasing the risk of familial breast and ovarian cancer and responsible for 90% of hereditary BC cases. Therefore, according to the conducted studies, screening of BRCA1 and BRCA2 genes is recommended as an important marker for early detection of all patients with breast or ovarian cancer risk with family history of the disease. In this review, we summarize the role of hereditary genes, mainly BRCA1 and BRCA2, in BC.  相似文献   

3.
4.
5.
6.
BRCA1 is a breast cancer susceptibility gene. Germline mutations in BRCA1 gene are found in 5 to 10% of breast cancer. The aim of this study is to screen the tunisian women with familial or sporadic breast cancer for BRCA1 gene mutations. The authors used the Protein Truncation Test (PTT) and DNA sequencing to detect BRCA1 gene mutations in 12 tunisian families with breast cancer and the Allele Specific Oligonucleotide-PCR (ASO-PCR) to detect the 185delAG and 1294del40 mutations in 150 tunisian women with sporadic breast cancer. A nonsens mutation was found, by PTT, in exon 11 of BRCA1 gene in one case of familial breast cancer. No mutation in the rest of exons was found by the DNA sequencing. The BRCA1 1294del40 mutation was found only in a patient with non familial breast cancer. The 185delAG mutation was absent in all cases of breast cancer. These data suggest that the germline mutation of BRCA1 is implicated in breast cancer in Tunisia and that the 185delAG mutation is absent in arab tunisian women.  相似文献   

7.
《Epigenetics》2013,8(3):157-163
Germline mutations in BRCA1 account for a low proportion of hereditary cases in diverse populations. Several efforts have been made to find new genes involved in the inheritance of breast cancer with no success until today. The participation of BRCA1 in the development of breast cancer has been proposed in several studies where hypermethylation of its promoter and a decrease in expression has been reported for sporadic cases and one study on familial cases. To explore the participation of BRCA1 in hereditary carcinogenesis through a different mechanism than the inheritance of germline mutations, we studied the methylation status of its promoter in breast tumors, from patients previously screened for BRCA1/BRCA2 germline mutations. We also determined the presence of the BRCA1 protein in these tumors and correlated both events with tumor grade, hormone receptors and ERBB2 presence. Promoter hypermethylation of the BRCA1 gene was detected in 51% of our biopsies, among which 67% did not express the respective protein. This result leads us to suggest that hypermethylation could be considered as an inactivating mechanism for BRCA1 expression, either as a first or second hit. Moreover, a number of biopsies with absence of expression on BRCA1 showed negative detection of estrogen and progesterone receptors, a similar phenotype to BRCA1 mutated breast tumors.  相似文献   

8.
Ovarian cancer is a silent killer as most patients have non-specific symptoms and usually present in advanced stage of the disease. It occurs due to certain genetic alterations and mutations namely founder mutations, 187delAG and 5385insC in BRCA1 and 6174delT in BRCA2 which are associated with specific family histories. These highly penetrant susceptibility genes responsible for approximately half of families containing 2 or more ovarian cancer cases account for less than 40% of the familial excess malignancy risk. The remaining risk may be due to single nucleotide polymorphisms (SNPs) which are single base change in a DNA sequence with usual alternatives of two possible nucleotides at a given position. Preliminary study involving 30 women with histologically proven epithelial ovarian cancer was conducted and their detailed genetic analysis was carried out. Regions of founder mutations on BRCA1 and BRCA2 were amplified and sequenced using primers designed based on 200 bp upstream and downstream regions of the mutation sites. Five sequence variants in BRCA1 were identified of which three novel sequence variants were found in 23 patients while in BRCA2, one novel sequence variant was found. The three founder mutations 187delAG, 5385insC in BRCA1 and 6174delT in BRCA2 were not seen in any of the subjects.  相似文献   

9.
目的:探讨BRCA1基因启动子区rs11655505、rs73625095位点单核苷酸多态性与散发性乳腺癌易感性的关系。方法:采用ASA-PCR方法对200例乳腺癌患者(均经病理确诊)及200例正常女性BRCA1基因启动子区rs11655505(A/G)、rs73625095(A/G)位点单核苷酸多态性(SNP)进行分析,并将其PCR产物进行测序。结果:乳腺癌患者BRCA1基因启动子区rs11655505位点的A/G基因型频率为75%,显著高于正常人的40%;A/A基因型频率为7%,G/G基因型频率为18%,分别低于正常人的30%、30%。此位点的A或G等位基因在乳腺癌病例组及对照组中均无差别(x2=2.427,P=0.119);rs73625095位点的A/G基因型频率为68%,显著高于正常人的15%;G/G基因型频率为32%,低于正常人的84%;乳腺癌病例组中BRCA1基因启动子区rs11655505、rs73625095位点的A/G基因型与淋巴结转移与否相比,差别均有统计学意义(x2=7.321,P=0.026、x2=4.782,P=0.029)。结论:BRCA1基因rs11655505位点、rs73625095位点的A/G基因型可能与散发性乳腺癌的发生相关,而且与有无发生淋巴结转移密切相关。rs73625095位点A和G等位基因可能为散发性乳腺癌发生的遗传危险因素。  相似文献   

10.
We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants reported elsewhere, R145W and I157T with breast cancer, we screened 737 BRCA1/2-negative familial breast cancer cases from 605 families, 459 BRCA1/2-positive cases from 335 families, and 723 controls from the United Kingdom, the Netherlands, and North America. All three variants were rare in all groups, and none occurred at significantly elevated frequency in familial breast cancer cases compared with controls. These results indicate that 1100delC may be the only CHEK2 allele that makes an appreciable contribution to breast cancer susceptibility.  相似文献   

11.
目的研究维吾尔族及汉族乳腺癌患者BRCA1基因突变及P53蛋白的表达。方法选取70例维吾尔族和40例汉族乳腺癌根治标本,对照组为32例维汉族乳腺良性病变(纤维腺病及纤维腺瘤)及乳腺癌旁非癌组织;运用PCR-SSCP和DNA序列测定的方法检测BRCA1基因突变及Evision二步法检测P53蛋白的表达。结果(1)110例维吾尔族及汉族乳腺癌中发现BRCA1突变的14个新位点。(2)110例维吾尔族及汉族乳腺癌BRCA1的突变率为10%,其中22例维吾尔族早发性乳腺癌(≤35岁)BRCA1突变率为31.82%,高于维吾尔族晚发性乳腺癌(P<0.01)。(3)110例维吾尔族及汉族乳腺癌中发现11例BRCA1基因核苷酸多态性位点。(4)BRCA1基因突变相关性乳腺癌中P53蛋白阳性表达率高于对照组,其淋巴结转移率高于对照组,其发病年龄小于对照组(P<0.01)。结论BRCA1基因突变与新疆维吾尔族早发性乳腺癌密切相关,且BRCA1突变相关性乳腺癌具有P53阳性率高、发病年龄趋于年轻化、淋巴结转移率高的趋势,这些特点有可能为基因检测前的筛选提供参考依据。  相似文献   

12.
13.
目的:探讨BRCA1基因启动子区rs11655505、rs73625095位点单核苷酸多态性与散发性乳腺癌易感性的关系。方法:采用ASA-PCR方法对200例乳腺癌患者(均经病理确诊)及200例正常女性BRCA1基因启动子区rs11655505(A/G)、rs73625095(A/G)位点单核苷酸多态性(SNP)进行分析,并将其PCR产物进行测序。结果:乳腺癌患者BRCA1基因启动子区rs11655505位点的A/G基因型频率为75%,显著高于正常人的40%;A/A基因型频率为7%,G/G基因型频率为18%,分别低于正常人的30%、30%。此位点的A或G等位基因在乳腺癌病例组及对照组中均无差别(x2=2.427,P=0.119);rs73625095位点的A/G基因型频率为68%,显著高于正常人的15%;G/G基因型频率为32%,低于正常人的84%;乳腺癌病例组中BRCA1基因启动子区rs11655505、rs73625095位点的A/G基因型与淋巴结转移与否相比,差别均有统计学意义(x2=7.321,P=0.026、x2=4.782,P=0.029)。结论:BRCA1基因rs11655505位点、rs736...  相似文献   

14.
15.
40 %~ 5 0 %的遗传性乳腺癌和至少 80 %的既有乳腺癌又有卵巢癌家族史的患者是由BRCA1突变引起的 .BRCA1C末端含有 2个BRCT结构域 (BRCT1和BRCT2 ) ,它们与BRCA1的重要功能密切相关 .许多乳腺癌易感突变发生在BRCA1的BRCT结构域中 .利用染色质结构检测技术表明 ,BRCT结构域具有染色质伸展活性 .利用缺失突变技术构建了 6种BRCT2结构域 (175 6~ 185 2位氨基酸残基 )缺失突变体并将BRCT2结构域中与染色质伸展相关的重要区域定位到 175 6~ 180 8之间的氨基酸残基 ;用丙氨酸扫描技术构建了 6种BRCT2结构域丙氨酸扫描突变体并将重要氨基酸残基序列定位到 1784~ 1788之间的VQLCG .BRCT2结构域的定位有助于预测BRCT2结构域突变后发生乳腺癌的风险 ,也为进一步研究BRCT2结构域的功能机制提供了有用的材料 .  相似文献   

16.
《PloS one》2013,8(2)
The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.  相似文献   

17.

Background

The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3–4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer.

Methods

132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification.

Results

Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop) previously reported, and c.3362del (p.Gly1121ValfsX3) which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%.

Conclusions

The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s) involved in the development of breast/pancreatic cancer families is required.  相似文献   

18.
19.
20.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号