首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The mechanisms involved in the neuroprotection induced by hypoxic preconditioning (HP) have not been fully elucidated. The involvement of hypoxia-inducible factor-1 alpha (HIF-1alpha) in such neuroprotection has been confirmed. There is also evidence showing that a series of genes with important functions in iron metabolism, including transferrin receptor (TfR1) and divalent metal transporter 1 (DMT1), are regulated by HIF-1alpha in response to hypoxia in extra-neural organs or cells. We therefore hypothesized that HP is able to affect the expression of iron metabolism proteins in the brain and that changes in these proteins induced by HP might be associated with the HP-induced neuroprotection. We herein demonstrated for the first time that HP could induce a significant increase in the expression of HIF-1alpha as well as iron uptake (TfR1 and DMT1) and release (ferroportin1) proteins, and thus increase tansferrin-bound iron (Tf-Fe) and non-transferrin-bound iron (NTBI) uptake and iron release in astrocytes. Moreover, HP could lead to a progressive increase in cellular iron content. We concluded that HP has the ability to increase iron transport speed in astrocytes. Based on our findings and the importance of astrocytes in neuronal survival in hypoxic/ischemic preconditioning, we proposed that the increase in iron transport rate and cellular iron in astocytes might be one of the mechanisms associated with the HP-induced neuroprotection. We also demonstrated that ferroportin1 expression was significantly affected by HIF-1alpha in astrocytes, implying that the gene encoding this iron efflux protein might be a hypoxia-inducible one.  相似文献   

2.
Heat shock factor 1 (HSF1) primarily regulates various cellular stress responses. The role of α-helix1 (H1) in its DNA-binding domain (DBD) during HSF1 activation remains unknown. Here, HSF1 lacking H1 loses its heat-induced activity, suggesting the importance of the latter. Furthermore, the CD spectra and AMBER prediction show that this H1 deficiency does not change the structure of HSF1 monomer, but does impact its heat-induced trimerization. Point mutation showed that Phe18 in H1 interacts with Tyr60, and that Trp23 interacts with Phe104 by an aromatic-aromatic interaction. Thus, the presence of H1 stabilizes the DBD structure, which facilitates the heat-induced trimerization and DNA-binding of HSF1.  相似文献   

3.
4.
膜蛋白presenilin 1(PS1)是γ分泌酶的催化组分,是催化产生β淀粉样蛋白(β-amyloid,Aβ)的关键蛋白酶,因此也是治疗阿尔茨海默病(Alzheimer’s disease,AD)的主要靶点.PS1属于膜内裂解蛋白酶家族,这是一类在膜脂双层内部催化肽键水解断裂的蛋白酶.PS1其独特的跨膜结构和催化机制虽然还未完全揭示,但近期相关的研究取得了重要成果:PS1有10个疏水区,跨膜9次,其N端位于胞内,C端位于胞膜外或者内质网腔内,亦或不同程度地插入膜内,2个起催化作用的天冬氨酸残基都位于疏水性的膜内,膜蛋白底物被催化水解时必须先结合到酶的疏水表面上来,然后再进入位于活性部位.虽然PS1的晶体从未获得,但2006年首次解析的膜内裂解蛋白酶GlpG的晶体结构和所提出的催化机理为PS1催化机理的揭示奠定了基础,也为设计和筛选PS1/γ分泌酶的特异性抑制剂提供了理论依据.  相似文献   

5.
6.
体外观察人中性粒细胞多肽1,3(Humanneutrophilpeptide,HNP1,3)及阿昔洛韦(Acyclovir,ACV)对单纯疱疹病毒-Ⅰ型(Herpessimplexvirus1,HSV-1)的抑制作用。以Vero细胞为靶细胞,用各种浓度HNP1,3与游离病毒颗粒(直接失活组)及感染病毒后的靶细胞(复制抑制组)进行相互作用,镜下观察各药物对HSV-1致细胞病变效应的抑制作用,并采用ELISA法测定感染48h后药物对HSV-1囊膜糖蛋白分泌的抑制作用。MTT法检测各药物对细胞的毒性作用。结果显示直接失活组中,HNP1,3可使HSV-1的致细胞病变效应减轻,对HSV-1直接失活的50%有效浓度(EC50)为8.1μg/mL、10.03μg/mL;复制抑制组中,ACV使HSV-1的致细胞病变效应减轻,EC50为0.68μg/mL。MTT检测结果表明HNP1,3在治疗浓度范围内无明显细胞毒性。以上结果表明HNP1,3除具有较强的抗菌作用和抗人类免疫缺陷病毒Ⅰ型(Humanimmunodeficiencyvirus1,HIV-1)活性外,还能失活HSV-1病毒颗粒,从而逆转病毒及其蛋白的病毒效应(致细胞病变)和抑制病毒蛋白质的合成。  相似文献   

7.
内质网应激是细胞内广泛存在的一种应激反应。研究表明,内质网应激与肿瘤的发生发展密切相关。针对内质网应激及其相应信号通路进行肿瘤的预防或治疗受到了广泛关注。IRE1(inositol-requiring enzyme 1)通路是内质网应激诱发的最保守的信号通路。研究证实,IRE1及其主要的下游效应分子剪切型X 盒结合蛋白1与肿瘤进展密切相关。本文对IRE1通路与肿瘤发生发展、血管新生、肿瘤转移、肿瘤耐药性和恶性程度的相关性进行了阐述,同时分析了IRE1在不同肿瘤样本中的突变率、突变类型与病人存活状态的关系。作为肿瘤治疗的有效靶点,针对IRE1通路的调控能够有效延缓肿瘤的发生发展。  相似文献   

8.
血管生成是指在原有血管的基础上形成新血管的过程。病理性血管生成是癌症、心血管类疾病和视网膜病变等一系列疾病的标志。1-磷酸鞘氨醇(sphingosine-1-phosphate,S1P)是一种信号脂质,由鞘氨醇激酶(sphingosine kinases,SPHK)合成,通过5种G蛋白偶联受体(sphingosine-1-phosphate receptors,S1PR1-5)发挥其不同的生物学和病理生理作用,并通过激活受体启动各种信号级联反应,影响细胞命运、血管张力、内皮功能和完整性以及淋巴细胞的运输等。其产生和信号的失衡与内皮功能障碍和异常血管生成等病理过程密切相关。越来越多的证据表明, SPHK-S1P轴在血管生成中发挥重要作用,尤其在癌症的发生发展与肿瘤微环境、动脉粥样硬化、心肌梗死等心血管类疾病,以及糖尿病和视网膜病变中具有重要意义。研究其相关作用与功能,可为治疗血管生成相关疾病提供新见解和药物治疗靶点。本文就SPHK-S1P轴通过SPHK以及S1PR1-5影响内皮细胞和平滑肌增殖、内皮细胞迁移以及由内皮细胞、周细胞和平滑肌细胞等形成管腔的分子机制进行阐述,同时进一步阐述SPHK-S1P轴如何通过鞘氨醇激酶以及S1PR1-5影响肿瘤、心血管类疾病、糖尿病以及视网膜病变中血管生成,旨在通过理解SPHK-S1P轴在血管生成中的分子机制为相关疾病提供新的治疗思路。  相似文献   

9.
10.
11.

Background

Chondrosarcoma is a type of highly malignant tumor with a potent capacity of local invasion and distant metastasis. The effect of endothelin-1 (ET-1) on migration activity in human chondrosarcoma cells is not clearly understood. Here, we found that ET-1 increased the migration and expression of cyclooxygenase (COX)-2 in human chondrosarcoma cells.

Methods

ET-1-mediated COX-2 expression was assessed by qPCR and Western blot analysis. The mechanisms of action of ET-1 in different signaling pathways were studied using Western blotting. Knockdown of proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the COX-2 promoter.

Results

Human chondrosarcoma tissues had significant expression levels of ET-1 and COX-2, which were higher than that in normal cartilage. Exogenous ET-1 increased cell migration and the expression of COX-2. In addition, COX-2 protein levels and cell migration ability were abolished by ET receptor antagonists. Activation of the mitogen-activated protein kinase (MAPK) and activator protein-1 (AP-1) pathways after ET-1 treatment was demonstrated, and ET-1-induced COX-2 expression and cell migration activity were inhibited by the specific inhibitor and mutant of MAPK and AP-1 cascades. ET-1 increased the binding of c-Jun to the AP-1 element on the COX-2 promoter. Furthermore, knockdown of ET-1 decreased cell metastasis in vitro and in vivo.

Conclusions

Our results indicated that ET-1 enhances the cell migration of chondrosarcoma by increasing COX-2 expression through the ET receptors, MAPK, and AP-1 signal transduction pathway.

General significance

We link high ET-1 and COX-2 expression to chondrosarcoma.  相似文献   

12.
Background: Human chemokine-like factor 1 (CKLF1), a recently discovered chemokine, has a broad spectrum of biological functions in immune-mediated diseases. It is highly expressed on Th2 lymphocytes and is a functional ligand for human CCR4. CKLF1 has a major role in the recruitment and activation of leucocytes, which plays an important role in the pathogenesis of allergic diseases. The present study was designed to determine the expression of CKLF1 in skin and serum in patients with atopic dermatitis (AD).Methods: The CKLF1 protein expression in skin lesion was analyzed by immunohistochemistry and ELISA. The mRNA expression of CKLF1 in skin lesion was detected by Real-time PCR. The serum levels of CKLF1, IgE, eotaxin, IL-4, IL-5, and IL-13 were measured by ELISA.Results: Histopathological changes in the skin of AD patients showed local inflammation with epidermal thickening and significant inflammatory cellular infiltration. Immunohistochemistry results demonstrated that CKLF1-staining positive cells were located in the epidermal and dermis, and that the CKLF1 expression in AD patients was significantly higher than that in normal control. The CKLF1 mRNA expression in AD patients was significantly higher than that in healthy controls. Serum CKLF1 and IgE levels were significantly increased in AD patients, as were the serum levels of IL-4, IL-5, IL-13 and eotaxin.Conclusions: Both CKLF1 protien and mRNA levels are overexpressed in the skin lesion of AD patients, along with an increase in serum CKLF1 level, indicating that CKLF1 may play an important role in the development of atopic dermatitis.  相似文献   

13.
14.
A new type of fucose-containing glycolipid exhibiting blood group H activity was isolated from rat ascites hepatoma cell AH 7974F. As a result of studying its structure by partial acid hydrolysis, enzymatic degradation and immuno-precipitation reaction, the structure was tentatively proposed as Fuc(1 → 2)Gal(1 → 3)GalNAc(1 → 4)Gal(1 → 4)Glc(1 → 1)Cer.  相似文献   

15.
16.
左永昌  李怡凡 《生理学报》1995,47(5):515-519
我们以前的工作发现束缚应激小鼠血清里存在一种能抑制淋巴细胞转化的蛋白。本工作研究了脑内白细胞介素1(IL-1)对这种血清蛋白产生的作用。脑室注射白细胞介素1受体拮抗剂(IL-1Ra)能抑制这种血清蛋白的产生,并呈量效关系。注射5.0μgIL-1Ra时,几乎完全对抗此蛋白的产生。脑室注射1pgIL-1β则对比原白的产生有增强作用;腹腔注射IL-1β或IL-1Ra均无影响。以上结果表明脑内IL-1在束  相似文献   

17.
18.
Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.  相似文献   

19.
Noncommunicable diseases such as cardiovascular disease (stroke and heart attack), cancer, chronic respiratory disease, and diabetes are a leading cause of death and disability worldwide and are worsened by inflammation. IL-1 is a driver of inflammation and implicated in many noncommunicable diseases. Acidosis is also a key feature of the inflammatory microenvironment; therefore it is vital to explore IL-1 signaling under acidic conditions. A HEK-IL-1 reporter assay and brain endothelial cell line were used to explore activity of mature IL-1α and IL-1β at pH 7.4 and pH 6.2, an acidic pH that can be reached under inflammatory or ischemic conditions, alongside cathepsin D-cleaved 20-kDa IL-1β produced under acidic conditions. We report that mature IL-1 signaling at IL-1 receptor type 1 (IL-1R1) is maintained at pH 6.2, but the activity of the decoy receptor, IL-1R2, is reduced. Additionally, cathepsin D-cleaved 20-kDa IL-1β was minimally active at IL-1R1 and was not further cleaved to highly active 17-kDa IL-1β. Therefore formation of the 20-kDa form of IL-1β may prevent the generation of mature bioactive IL-1β and thus may limit inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号