首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化疗耐受是乳腺癌复发转移率居高不下、综合治疗效果难以提高的主要瓶颈。前期研究证实,miR-200c-3p在乳腺癌敏感细胞MCF-7中的表达量显著高于耐药细胞MCF-7/5Fu,提示miR-200c-3p可能参与乳腺癌化疗增敏,但是具体机制不详。生物信息学预测联合双荧光素酶报告基因实验证实,miR-200c-3p靶向调控FOSL1,且在多种肿瘤中miR-200c-3p与FOSL1表达负相关。实时荧光定量PCR技术和Western印迹技术证实,FOSL1在耐药细胞MCF-7/5Fu中的表达量显著高于亲本细胞MCF-7。在MCF-7细胞中,过表达FOSL1能够显著提高该细胞对5-Fu的化疗耐受;在MCF-7/5Fu中,使用siRNA技术沉默FOSL1,将提高该细胞对5-Fu的化疗敏感性。此外,MTT实验还发现,miR-200c-3p抑制剂能够显著上调MCF-7细胞对5-Fu的耐受,但是在此细胞中干扰FOSL1的表达,又可以增加其对5-Fu的化疗敏感性;miR-200c-3p mimics显著增加MCF-7/5Fu细胞的化疗敏感性,上调FOSL1表达后又可逆转miR-200c-3p mimics的化疗增敏作用。总之,miR-200-3p能够通过靶向FOSL1增加乳腺癌细胞对5-fluorouridine化疗敏感性。  相似文献   

2.
BackgroundBreast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial.MethodsWe used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms.ResultsKnockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin.ConclusionsDUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer.  相似文献   

3.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

4.
长链非编码RNAs (long non-coding RNAs, lncRNAs) 是一类长度大于200 nt,无蛋白质编码功能的RNAs。近年来,lncRNAs在肿瘤发生发展中的作用备受关注。LncRNAs芯片分析结合后期实时荧光定量PCR验证发现,ITGA9-AS1在MCF-7细胞中的表达量显著高于耐药细胞MCF-7/5Fu,且其在乳腺癌细胞中的表达量显著低于正常乳腺上皮细胞。生物信息学预测,ITGA9 AS1无蛋白质编码功能。在乳腺癌细胞T47D中过表达ITGA9-AS1,可显著抑制该细胞的增殖和克隆形成能力,增加该细胞对化疗药物顺铂(cisplatin, cDDP)的敏感性。相反,在乳腺上皮细胞MCF-10A中敲低ITGA9-AS1的表达,能够明显增加该细胞的增殖能力和克隆形成能力,同时降低该细胞对cDDP的敏感性。总之,lncRNA ITGA9-AS1可抑制乳腺癌细胞增殖,增强乳腺癌细胞对化疗药物的敏感性。  相似文献   

5.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

6.
A major outcome from Taxol treatment is induction of tumor cell apoptosis. However, metabolic responses to Taxol-induced apoptosis are poorly understood. In this study, we hypothesize that alterations in specific amino acid transporters may affect the Taxol-induced apoptosis in breast cancer cells. In this case, the activity of the given transporter may serve as a biomarker that could provide a biological assessment of response to drug treatment. We have examined the mechanisms responsible for Taxol-induced neutral amino acid uptake by breast cancer cells, such as MCF-7, BT474, MDAMB231 and T47D. The biochemical and molecular studies include: (1) growth-inhibition (MTT); (2) transport kinetics: (3) substrate-specific inhibition; (4) effect of thiol-modifying agents NEM and NPM; (5) gene expression of amino acid transporters; and (6) apoptotic assays. Our data show that Taxol treatment of MCF-7 cells induced a transient increase in Na+-dependent transport of the neutral amino acid transporter B0 at both gene and protein level. This increase was attenuated by blocking the transporter in the presence of high concentrations of the substrate amino acid. Other neutral amino acid transporters such as ATA2 (System A) and ASC were not altered. Amino acid starvation resulted in the expected up-regulation of System A (ATA2) gene, but not for B0 and ASC. B0 was significantly down regulated. Taxol treatment had no significant effect on the uptake of arginine and glutamate as measured by System y+ and X GC respectively. Tunel assays and FACS cell cycle analysis demonstrated that both Taxol- and doxorubicin-induced upregulation of B0 transporter gene with accompanying increase in cell apoptosis, could be reversed partially by blocking the B0 transporter with high concentration of alanine, and/or by inhibiting the caspase pathway. Both Taxol and doxorubicin treatment caused a significant decrease in S-phase of the cell cycle. However, Taxol-induced an increase primarily in the G2 fraction while doxorubicin caused increase in G1/G0 together with a small increase in G2. In summary, our study showed that Taxol induced apoptosis in several breast cancer cells results in activation of amino acid transporter System B0 at both gene and protein level. Similar response was observed with another chemotherapeutic agent Doxorubicin, suggesting that this increase is in response to apoptosis, and not only due to changes in cell cycle related events. Drs. Wu and Shen contributed equally to this study.  相似文献   

7.
Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.  相似文献   

8.
9.
Peroxynitrite (ONOO-) is a reactive oxidant formed from superoxide (?O2-) and nitric oxide (?NO), that can oxidize several cellular components, including essential protein, non-protein thiols, DNA, low-density lipoproteins (LDL), and membrane phospholipids. ONOO- has contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease, and atherosclerosis. Because of the lack of endogenous enzymes to thwart ONOO- activation, developing a specific ONOO- scavenger is remarkably important. In this study, the ability of hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) to scavenge ONOO- and to protect cells against ONOO- and ROS was investigated. The data gained show that hesperetin can efficiently scavenge authentic ONOO-. In spectrophotometric analysis, the data revealed that hesperetin led to declined ONOO--mediated nitration of tyrosine through electron donation. Hesperetin exhibited significant inhibition on the nitration of bovine serum albumin (BSA) by ONOO- in a dose-dependent manner. Hesperetin also manifested cytoprotection from cell damage induced by ONOO- and ROS. The present study suggests that hesperetin is a powerful ONOO- scavenger and promotes cellular defense activity in the protection against ONOO- involved diseases.  相似文献   

10.
Insulin-like growth factor-1 (IGF-1) signaling system exerts a broad antiapoptotic function and plays a crucial role in resistance to anticancer therapies. Exposure of MCF-7 breast cancer cells to IGF-1 rapidly and transiently induced tyrosine phosphorylation and activation of phosphoinositide-dependent kinase-1 (PDK1). This was paralleled by Akt/protein kinase B and protein kinase C-ζ phosphorylation, at Thr308 and Thr410, respectively. IGF-1 treatment also enhanced PDK1 interaction with IGF-1 receptor (IGF-1R) in intact MCF-7 cells. Pulldown assays revealed that PDK1 bound IGF-1R in vitro and that the region encompassing amino acids 51–359 of PDK1 was necessary for the interaction. Synthetic peptides corresponding to IGF-1R C terminus amino acids 1295–1337 (C43) and to PDK1 amino acids 114–141 reduced in vitro IGF-1R/PDK1 interaction in a concentration-dependent manner. Loading of fluoresceinated-C43 (fluorescein isothiocyanate (FITC)-C43) into MCF-7 cells significantly reduced IGF-1R/PDK1 interaction and phosphorylation of PDK1 substrates. Moreover, FITC-C43 intracellular loading reverted the protective effect of IGF-1 on growth factor deprivation-induced cell death. Finally, the inhibition of IGF-1R/PDK1 interaction and signaling by FITC-C43 was accompanied by 2-fold enhanced killing capacity of cetuximab in human GEO colon adenocarcinoma cells and was sufficient to restore cell death in cetuximab-resistant cell clones. Thus, disruption of PDK1 interaction with IGF-1R reduces IGF-1 survival effects in cancer cells and may enhance cell death by anticancer agents.  相似文献   

11.
The human STYK1/NOK protein is approximately 30–35% similar to mouse fibroblast growth factor receptor 3 and a kinase homologue in D. melanogaster in the tyrosine protein kinase region. STYK1/NOK was identified as being up regulated in MDA-MB-231, an estrogen receptor-alpha negative breast cancer cell line, following 12 h of estrogen treatment at 1 × 10−9 M. On further investigation of STYK1/NOK in estrogen treated cell line MDA-MB-231, STYK1/NOK was up regulated at 6 h post treatment when compared to untreated cells. We also investigated the expression levels of STYK1/NOK in other breast cancer cell lines MCF-7, MDA-MB-231, BT-549, and MDA-MB-435S using QRT-PCR. In addition, the analysis of message accumulation was increased with other synthetic estrogen response modifiers. We propose that the regulation of STYK1/NOK is achieved independent of ERα and suggests further investigation to the relevance of this kinase in breast cancer progression.  相似文献   

12.
We aimed to investigate the potential role and regulatory mechanism of long noncoding RNA tumor-associated lncRNA expressed in chromosome 2 (TALNEC2) in breast cancer. The expression of TALNEC2 in breast cancer tissues and cells were investigated. MCF-7 and MDA-MB-231 cells were transfected with small interfering RNA (siRNA) duplexes for targeting TALNEC2 (si-TALNEC2), enhancer of zeste homolog 2 (EZH2; si-EZH2) and p57KIP2 (si-p57 KIP2), and their corresponding controls (si-NC). The viability, colony forming ability, cell cycle, apoptosis, and autophagy of transfected cells were assessed. The expressions of p-p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathway-related proteins were investigated. The results showed that TALNEC2 was highly expressed in breast cancer tissues and cells. Knockdown of TALNEC2 significantly inhibited the malignant behaviors of MCF-7 and MDA-MB-231 cells, including inhibiting cell viability and colony forming, arresting cell cycle at G0/G1 phase, inducing cell apoptosis, and promoting cell autophagy. EZH2 was a TALNEC2 binding protein, which was upregulated in breast cancer tissues and cells and could negatively regulate p57 KIP2. Effects of TALNEC2 knockdown on malignant behaviors of MCF-7 cells were reversed by p57 KIP2 knockdown. The expressions of p-p38, RelA, and RelB in MCF-7 cells were decreased after knockdown of TALNEC2 or EZH2, which were reversed by knockdown of p57 KIP2 concurrently. In conclusion, TALNEC2 may play an oncogenic role in breast cancer by binding to EZH2 to target p57 KIP2. Activation of p-p38 MAPK and NF-κB pathways may be key mechanisms mediating the oncogenic role of TALNEC2 in breast cancer. TALNEC2 may serve as a promising target in the therapy of breast cancer.  相似文献   

13.
14.
15.
Breast cancer is one of the most common cancers in the female population worldwide, and its development is thought to be associated with genetic mutations that lead to uncontrolled and accelerated growth of breast cells. This abnormal behavior requires extra energy, and indeed, tumor cells display a rewired energy metabolism compared to normal breast cells. Inorganic phosphate (Pi) is a glycolytic substrate of glyceraldehyde-3-phosphate dehydrogenase and has an important role in cancer cell proliferation. For cells to obtain Pi, ectoenzymes in the plasma membrane with their catalytic site facing the extracellular environment can hydrolyze phosphorylated molecules, and this is an initial and possibly limiting step for the uptake of Pi by carriers that behave as adjuvants in the process of energy harvesting and thus partially contributes to tumor energy requirements. In this study, the activity of an ectophosphatase in MDA-MB-231 cells was biochemically characterized, and the results showed that the activity of this enzyme was higher in the acidic pH range and that the enzyme had a Km = 4.5 ± 0.5 mM para-nitrophenylphosphate and a Vmax = 2280 ± 158 nM × h−1 × mg protein−1. In addition, classical acid phosphatase inhibitors, including sodium orthovanadate, decreased enzymatic activity. Sodium orthovanadate was able to inhibit ectophosphatase activity while also inhibiting cell proliferation, adhesion, and migration, which are important processes in tumor progression, especially in metastatic breast cancer MDA-MB-231 cells that have higher ectophosphatase activity than MCF-7 and MCF-10 breast cells.  相似文献   

16.
Breast cancer has become the leading cause of cancer-related death among women. A large number of patients become resistant to drug chemotherapy. Paclitaxel (Taxol) is an effective chemotherapeutic agent used to treat cancer patients. Taxol has been widely used in human malignancies including breast cancer because it can stabilize microtubules resulting in cell death by causing an arrest during the G2/M phase of the cell cycle. Pro-apoptotic Bcl-2 antagonist killer 1 (Bak) plays an important role in Taxol-induced apoptosis in breast cancer. In our present study, we investigated the expression of the Bak protein and clinicopathological correlations in a large sample of breast cancer tissues by immunohistochemistry. We found that the percentage of high scores of Bak expression in breast cancer was significantly lower than that of the non-cancerous breast control tissue. In addition, lower Bak expression was positively associated with the clinical TNM stage of breast cancer with a significant decrease in overall survival compared with those with higher Bak expression especially in the Luminal and HER2 subtypes. Importantly, higher Bak expression predicted a favorable clinical outcome in the cases treated with Taxol indicated by a higher overall survival than that of patients with lower Bak expression especially in Luminal and HER2 subtypes. Furthermore, these results were confirmed in vitro since overexpression of Bak sensitized breast cancer cells to Taxol by inhibiting proliferation and promoting apoptosis; in contrast, downregulation of Bak through siRNA transfection inhibited Taxol induced-apoptosis. Therefore, our results demonstrate that Bak acts as a sensitive biomarker and favorable prognostic factor for Taxol treatment in breast cancer. The restoration of Bak expression would be therapeutically beneficial for Taxol resistant breast cancer patients.  相似文献   

17.

Background

MiR-155 has emerged as an “oncomiR”, which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.

Results

The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.

Conclusions

TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.  相似文献   

18.
19.
Lactoferrin (LF) is a multifunctional protein that plays important physiological roles as one of the most concentrated proteins in many human and other mammalian fluids and tissues. In particular, LF provides antibacterial properties to human milk, saliva, and tear fluid. LF also protects against stress-induced lipid peroxidation at inflammation sites through its iron-binding ability. Previous studies have shown that LF can be efficiently nitrated via biologically relevant mediators such as peroxynitrite (ONOO), which are also present at high intracellular concentrations during inflammation and nitrosative stress. Here, we examine changes in antibacterial properties and structure of LF following ONOO treatment. The reaction induces nitration of tyrosine and tryptophan residues, which are commonly used as biomarker molecules for several diseases. Treatment with ONOO at a 10/1 M ratio of ONOO to tyrosine inhibited all antibacterial activity exhibited by native LF. Secondary structural changes in LF were assessed using circular dichroism spectroscopy. Nitration products with and without the addition of Fe3+ show significant reduction in alpha-helical properties, suggesting partial protein unfolding. Iron-binding capacity of LF was also reduced after treatment with ONOO, suggesting a decreased ability of LF to protect against cellular damage. LC-MS/MS spectrometry was used to identify LF peptide fragments nitrated by ONOO, including tyrosine residue Y92 located in the iron-binding region. These results suggest that posttranslational modification of LF by ONOO could be an important pathway to exacerbate infection, for example, in inflamed tissues and to reduce the ability of LF to act as an immune responder and decrease oxidative damage.  相似文献   

20.
乳腺癌是致死率很高的恶性肿瘤,由ABCG2 (ATP-binding cassette G2)介导的多药耐药(multidrug resistance,MDR)是导致其化疗失败的重要原因,探讨ABCG2介导的耐药机制并探寻其关键分子是当前亟待解决的难题。上皮细胞黏附分子(epithelial cell adhesion molecule,EpCAM)参与多种肿瘤耐药,且与乳腺癌MDR密切相关,但它在ABCG2介导的乳腺癌耐药中的作用尚未阐明。本研究目的在于探究EpCAM对于ABCG2介导的乳腺癌细胞的多药耐药的调节作用及其机制。CCK8细胞毒性结果证实,相对于人乳腺癌药物敏感株MCF-7,耐药株MCF-7/MX对米托蒽醌(mitoxantrone,MX)的耐药性显著增强;Western 印迹结果显示,与MCF-7相比,MCF-7/MX细胞中ABCG2高表达,EpCAM表达上调。siRNA法敲低MCF-7/MX细胞中EpCAM可下调其ABCG2表达,并恢复对MX的敏感性。倒置显微镜观察细胞形态,发现敲低EpCAM可减少MCF-7/MX细胞间连接。免疫荧光双染法观察到EpCAM与密封蛋白1(claudin 1)在MCF-7/MX细胞共定位;进一步Western 印迹结果表明,敲低EpCAM减少MCF-7/MX细胞中密封蛋白1表达。综上所述,EpCAM可能通过与密封蛋白1相互作用,增强细胞间紧密连接,促进ABCG2介导的乳腺癌多药耐药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号