首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The long noncoding RNA MNX1-AS1 has been reported to facilitate the progression of glioblastoma and ovarian cancer. Nevertheless, the biological roles and underlying mechanisms of MNX1-AS1 in colon adenocarcinoma have not been studied until now. In the current study, MNX1-AS1 was upregulated in colon adenocarcinoma. JASPAR prediction tool showed that E2F1 could bind to the promoter region of MNX1-AS1. The chromatin immunoprecipitation assay and luciferase reporter assay were used to verify the interactions between MNX1-AS1 and E2F1. Then functional assays revealed that downregulation of MNX1-AS1 decreased cell proliferation, migration, and invasion in colon adenocarcinoma, but upregulation of E2F1 reversed the effects. Moreover, subcellular fractionation assay manifested that MNX1-AS1 was enriched in the cytoplasm of colon adenocarcinoma cells, thus we speculated whether MNX1-AS1 could function as a competing endogenous RNA (ceRNA) to play roles in colon adenocarcinoma. Bioinformatics analysis and luciferase reporter assay indicated that MNX1-AS1 could sponge microRNA-218-5p (miR-218-5p). Furthermore, we discovered that SEC61A1 was downstream target of miR-218-5p, and MNX1-AS1 acted as a ceRNA to upregulate the expression of SEC61A1 through sponging miR-218-5p. Finally, rescue assays confirmed that MNX1-AS1 facilitated the progression of colon adenocarcinoma through regulating miR-218-5p/SEC61A1 axis. Taken together, we concluded that E2F1-mediated MNX1-AS1-miR-218-5p-SEC61A1 feedback loop contributed to the progression of colon adenocarcinoma.  相似文献   

2.
Motor neuron and pancreas homeobox 1-antisense RNA1 (MNX1-AS1) is a novel long noncoding RNA and has been suggested to be overexpressed in human ovarian cancer and glioma. The role of MNX1-AS1 in lung cancer was still unknown. In our study, we observed levels of MNX1-AS1 expression through analyzing The Cancer Genome Atlas and found MNX1-AS1 expression was highly expressed in lung adenocarcinoma tissues compared with normal lung tissues, but there was no statistical difference between lung squamous cell carcinoma tissues and normal lung tissues. Furthermore, we conducted quantitative real-time polymerase chain reaction, and confirmed that the expression of MNX1-AS1 was definitely higher in lung adenocarcinoma tissue samples, but not in lung squamous cell carcinoma tissue samples. In addition, high MNX1-AS1 expression was found to be associated with the low differentiated degree, advanced clinical stage, big tumor size, lymph node metastasis, and distant metastasis in lung adenocarcinoma patients. High expression of MNX1-AS1 was negatively correlated with overall survival time and served as an independent unfavorable prognostic factor in patients with lung adenocarcinoma. The in vitro functional studies suggested that suppression of MNX1-AS1 inhibited lung adenocarcinoma cell proliferation and migration, and promoted apoptosis. In conclusion, MNX1-AS1 is overexpressed in lung adenocarcinoma, and associated with clinical progression and poor prognosis.  相似文献   

3.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   

4.
Long noncoding RNAs (lncRNAs) have been discovered as significant regulators in a wide range of human cancers. Among them, lncRNA MNX1-AS1 has been proved to be an oncogene in ovarian cancer and glioblastoma. However, the regulatory mechanism of MNX1-AS1 in cervical cancer remains to be understood. Therefore, this study planned to explore the role of MNX1-AS1 in cervical cancer. In the beginning, we found that the expression of MNX1-AS1 was obviously upregulated in cervical cancer tissues and cell lines. Kaplan-Meier survival analysis revealed that patients with higher MNX1-AS1 expression level suffered from shorter overall survival time than those with lower MNX1-AS1 level. Moreover, by loss-of-function and gain-of-function assay, the effect of MNX1-AS1 on cell proliferation and apoptosis was examined on cellular level. Results showed that the proliferation of Hela cells was significantly inhibited and apoptosis enhanced by the transfection of shMNX1-AS1, while overexpressing MNX1-AS1 in E6E7 cells presented the contrary results. As for mechanism investigation, it was demonstrated that overexpression of MNX1-AS1 significantly improved the expression of p-ERK1/2 and p-JNK. And the effects of MNX1-AS1 on cell proliferation and apoptosis would be diminished after inactivating the phosphorylation of either ERK or JNK. Taken together, it was identified that MNX1-AS1 promoted proliferation and inhibited apoptosis of cervical cancer cells through MAPK pathway.  相似文献   

5.
Long noncoding RNAs have been reported to be essential regulators in several human diseases, including tumorigenesis. A recent report revealed that FLVCR1-AS1 promotes the progression of hepatocellular carcinoma. However, whether FLVCR1-AS1 is involved in lung cancer remains unclear. In this study, we found that the expression of FLVCR1-AS1 was increased in lung cancer tissues according to The Cancer Genome Atlas database. Similarly, FLVCR1-AS1 was significantly upregulated in lung cancer cell lines. Knockdown of FLVCR1-AS1 dramatically reduced the cell proliferation, migration, and invasion of SPCA1 and A549. Mechanistically, we found that the expression levels of CTNNB1, SOX4, CCND1, CCND2, c-MYC, as well as nucleus β-catenin were decreased in lung cancer cells after FLVCR1-AS1 silencing. Thus, FLVCR1-AS1 positively regulates the activation of the Wnt/β-catenin pathway. Overexpression of CTNNB1 reversed the effect of FLVCR1-AS1 knockdown on A549 cells. In sum, FLVCR1-AS1 silencing inhibited the proliferation, migration, and invasion of lung cancer cells by inhibiting the activity of the Wnt/β-catenin signaling pathway.  相似文献   

6.
Thyroid cancer is a common malignant tumour of the endocrine system and ranks ninth in cancer incidence worldwide. An extensive body of evidence has demonstrated that lncRNAs play a critical role in the progression of thyroid cancer. The lncRNA MAPKAPK5-AS1 has been reported to be abnormally expressed and to play a role in the development of various human cancers. However, MAPKAPK5-AS1’s potential role in thyroid cancer progression remains unknown. The objective of our study was to explore the role and mechanism of MAPKAPK5-AS1 in thyroid cancer cells and provide a potential target for its biological diagnosis and treatment. We transfected sh-MAPKAPK5-AS1 and sh-NC into BCPAP and TPC-1 cells for loss-of-function assays. Results of RT-qPCR analysis demonstrated that MAPKAPK5-AS1 was more highly expressed in thyroid cancer cells compared to normal cells. Functional assays demonstrated that interfering with the expression of MAPKAPK5-AS1 notably repressed proliferation and invasion and accelerated apoptosis of BCPAP and TPC-1 cells. Mechanistically, we found that miR-519e-5p was negatively regulated by MAPKAPK5-AS1 and that tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH) was a target of miR-519e-5p. Additionally, rescue assays demonstrated that downregulation of MAPKAPK5-AS1 expression inhibited cell proliferation, migration, and invasion and promoted apoptosis by sponging miR-519e-5p, thereby increasing YWHAH expression. Ultimately, our study revealed that MAPKAPK5-AS1 promotes proliferation and migration of thyroid cancer cells by targeting the miR-519e-5p/YWHAH axis, which provides novel insight into the development and progression of thyroid cancer.Key words: IncRNA MAPKAPK5-AS1, MiR-519e-5p, YWHAH, thyroid cancer cell  相似文献   

7.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

8.
Endometrial cancer (EC) is deemed to be the most typical gynecologic malignant tumor. Despite the incidence of EC being lower in Asia than that in western countries, substantial increased incidence has been observed in the past few decades in Asia. Although various molecular testing methods and genomic science have developed, the overall prognosis is still disappointing. LncRNAs have been found to influence the progression of various cancers. CHL1-AS1 has been found to be upregulated in ovarian endometriosis, nevertheless, the molecular mechanism and biological function of CHL1-AS1 in EC have not been explored. In our exploration, both CHL1-AS1 and CHL1 were upregulated in EC cells. Knockdown of CHL1-AS1 or CHL1 inhibited cell proliferation and migration in EC. Furthermore, microRNA-6076 (miR-6076) could bind with CHL1-AS1 or CHL1, and regulate the expression of CHL1. Finally, absence of miR-6076 or overexpression of CHL1 can partially rescue the effect of CHL1-AS1 knockdown or miR-6076 upregulation on cell proliferation and migration, respectively. All in all, our research was the first endeavor to study the underlying mechanism of CHL1-AS1 in EC and confirmed that CHL1-AS1 regulated EC progression via targeting the miR-6076/CHL1 axis, offering new insight into treating EC.  相似文献   

9.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

10.
Prostate cancer (PCa) is one of the major cancers affecting males with high mortality around the world. Recent studies have found that some long noncoding RNAs play a critical part in the cellular processes of PCa. In our study, aberrant expressed lymphoid enhancer-binding factor-1 antisense RNA 1 (LEF1-AS1), microRNA-330-5p (miR-330-5p), and lymphoid enhancer-binding factor-1 (LEF1) were screened out from a microarray database, the role of the novel noncoding RNA regulatory circuitry in the initiation and development of PCa was investigated. LEF1-AS1 and LEF1 were highly expressed while miR-330-5p was poorly expressed in PCa. Following that, the PCa PC-3 cell line was adopted for subsequently experiments, in which the expression of LEF1-AS1 and miR-330-5p was subsequently altered by means of exogenous transfection. After that, the effects of up- or downregulation of LEF1-AS1 and miR-330-5p on epithelial–mesenchymal transition (EMT) and the cell ability for proliferation, invasion, migration in vitro, and tumorigenesis and lymph node metastasis (LNM) in vivo were evaluated. RNA crosstalk revealed that LEF1-AS1 bound to miR-330-5p and LEF1 was the target gene of miR-330-5p. Silenced LEF1-AS1 or elevated miR-330-5p exhibited inhibited EMT processes, reduced ability of proliferation, invasion and migration, coupling with decreased tumorigenesis and LNM in nude mice. The key findings of this study collectively propose downregulation of LEF1-AS1 competing with miR-330-5p to inhibit EMT, invasion and migration of PCa by LEF1 repression.  相似文献   

11.
Long noncoding RNAs (lncRNAs) have been recognized as cancer-associated biological molecules, favoring hepatocellular carcinoma (HCC) progression. This study was conducted to elucidate the effects lncRNA lymphoid enhancer-binding Factor 1 antisense RNA (LEF1-AS1) on the pathological development of HCC, along with the crosstalk involving microRNA-136-5p (miR-136-5p) and with-no-K (lysine) kinase 1 (WNK1). The study recruited primary HCC tissues and their corresponding nonneoplastic liver tissues. The gain- and loss-of-function studies were performed in HCC cells HuH-7 and tumor xenografts in nude mice. The dual luciferase reporter gene assay system, RNA pull-down, and radioimmunoprecipitation assays were applied to detect their interactions among lncRNA LEF1-AS1, miR-136-5p, and WNK1. 5-Ethynyl-2′-deoxyuridine staining, scratch test, Transwell assays, and in vitro tube formation assays were conducted to examine HCC cell proliferation, migration, and invasion and HUVEC angiogenesis. HCC tissues and cells contained high lncRNA LEF1-AS1 expression. LncRNA LEF1-AS1 upregulation triggered markedly increased HCC cell proliferation, migration, and invasion and human umbilical vein endothelial cell angiogenesis. In vivo silencing lncRNA LEF1-AS1 resulted in reduced tumor cell vitality and matrix metalloproteinase-9 and the vascular endothelial growth factor expression. Additionally, the role of lncRNA LEF1-AS1 was found to be largely dependent on WNK1. Association of lncRNA LEF1-AS1 with WNK1 blocked the inhibitory effect of miR-136-5p on WNK1, which was confirmed by in vivo experiments. Altogether, our results revealed an important role of lncRNA LEF1-AS1 in regulating the HCC progression by regulating WNK1, providing a potential biomarker for the therapeutic modalities regarding HCC.  相似文献   

12.
Growing evidence has shown that long noncoding RNAs (lncRNAs) play crucial roles in cervical cancer. Dy000sregulation of lncRNA SOX21 antisense RNA 1 (SOX21-AS1) has been reported in several tumors. However, its expression pattern and potential biological function in cervical cancer (CC) have not been investigated. In this study, we first reported that SOX21-AS1 expression was significantly upregulated in both CC tissues and cell lines. High expression of SOX21-AS1 was found to be significantly correlated with Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis and depth of cervical invasion. Further clinical assay confirmed that high SOX21-AS1 expression was associated with shorter overall survival and could be used as a potential prognostic biomarker for CC patients. Functional investigation showed that knockdown of SOX21-AS1 suppressed CC cells proliferation, migration, and invasion, as well as epithelial to mesenchymal transition progress. Furthermore, our data showed that microRNA-7 (miR-7) interacted with SOX21-AS1 by directly targeting the miRNA-binding site in the SOX21-AS1 sequence, and quantitative real-time polymerase chain reaction results showed overexpression of SOX21-AS1 decreased the levels of miR-7 in CC cells. Moreover, we confirmed that miR-7 directly targeted the 3′-untranslated region of voltage dependent anion channel 1 (VDAC1). Final in vitro assay suggested that in CC cells with SOX21-AS1, VDAC1 overexpression resulted in an increase of cell proliferation, migration, and invasion. Overall, our findings illuminate how SOX21-AS1 formed a regulatory network to confer an oncogenic function in CC and SOX21-AS1 could be regarded as an efficient therapeutic target and potential biomarker for CC patients.  相似文献   

13.
14.
Long noncoding RNAs (lncRNAs) played an important role in tumorigenesis and development of hepatocellular carcinoma (HCC). In this study, we first demonstrated that lncRNA DLX6 antisense RNA 1 (DLX6-AS1) was upregulated in cancer tissues and cells lines compared with normal adjacent and cell line. Knock-down DLX6-AS1 by transfection with small interfering RNA (siRNA) suppressed cell proliferation, migration, and invasion of HCC cells. Cell cycle analysis showed that cells transfected with siRNA were arrested in G0/G1 phase. Then, we performed dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay to show that DLX6-AS1 could bind with miR-424-5p. And cotransfection inhibitor of miR-424-5p with siRNA of DLX6-AS1 could abolish the inhibitory effect of siRNA of DLX6-AS1 on cell proliferation, migration, and invasion. Moreover, we further demonstrated that the oncogene WEE1 G2 checkpoint kinase (WEE1) was the target of miR-424-5p and expression levels of WEE1 were positive correlation with that of DLX6-AS1. Taken together, these results suggested that upregulated DLX6-AS1 promoted cell proliferation, migration, and invasion of HCC through increasing expression of WEE1 via targeting miR-424-5p.  相似文献   

15.
Long non-coding RNAs (lncRNAs) are crucial regulators of tumorigenesis and progression in human cancer, including hepatocellular carcinoma (HCC). However, the role of most lncRNAs that are dysregulated in HCC remains to be elucidated. Here, we investigated the role of OSER1-AS1 in the progression of HCC. The results of database and qRT-PCR analysis demonstrated that OSER1-AS1 was highly expressed in HCC tissues and the high expression of OSER1-AS1 was closely associated with larger tumor size, advanced tumor stages, lower disease free survival and overall survival of HCC patients. OSER1-AS1 knockdown significantly inhibited the proliferation, invasion and migration of HCC cells, and induced the apoptosis. In addition, the dual luciferase reporter assay directly demonstrated that OSER1-AS1 functioned as a molecular sponge for miR-372-3p to promote Rab23 expression. Moreover, the results of immunohistochemistry and western blot analysis showed that Rab23 was highly expressed in HCC tissues, and the high expression of Rab23 was closely associated with the poor overall survival of HCC patients. Immunofluorescence assay also found the subcellular localization of Rab23 in HCC cells. Rab23 was obviously downregulated in cells that were transfected with miR-372-3p mimics. MiR-372-3p mimics significantly inhibited the proliferation and invasion of HCC cells). Rab23 restoration partially reversed miR-372-3p-induced tumor suppressive effects on HCC cells. In conclusion, we found that OSER1-AS1 acted as a ceRNA to sponge miR-372-3p, thereby positively regulating the Rab23 expression and ultimately acting as a tumor suppressor gene in HCC progression.  相似文献   

16.
17.
Lung cancer has been proved to be one of the most common kinds of cancers around the globe. Meanwhile, as the predominant type of lung cancer, lung adenocarcinoma (LUAD) has received increasing attention in cancer research. Long noncoding RNAs (lncRNAs) are known to be associated with oncogenesis and progression of various cancers. However, many lncRNAs have not been thoroughly detected in LUAD. In this study, through bioinformatics analysis we found that zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) was associated with poor prognosis of LUAD patients. Also, ZFPM2-AS1 was detected to be overexpressed in LUAD tissues and cells. Furthermore, ZFPM2-AS1 could promote the proliferation of LUAD cells. Next, miR-18b-5p was found to bind with and negatively regulated by ZFPM2-AS1. VMA21, target gene of miR-18b-5p, could bind with and be negatively regulated by miR-18b-5p. More importantly, both ZFPM2-AS1 and VMA21 were found to be attached to the RNA-induced silencing complex constructed from miR-18b-5p and Ago2. Also, ZFPM2-AS1 could regulate the expression of VMA21. Therefore, ZFPM2-AS1 were confirmed to regulate VMA21 by competitively binding with miR-18b-5p. Finally, rescue assays confirmed that ZFPM2-AS1 could regulate LUAD cell proliferation via miR-18b-5p/VMA21 axis.  相似文献   

18.
19.
Long noncoding RNAs (lncRNAs) are vital mediators involved in cancer progression. Previous studies confirmed that FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is upregulated in tumor diseases. The potential influence of FOXD2-AS1 in glioma progression, however, remains unknown. In this paper, FOXD2-AS1 was found to be upregulated in glioma tissues. Its level was linked with glioma stage. Moreover, glioma patients expressing high level of FOXD2-AS1 suffered worse prognosis. Biological functions of FOXD2-AS1 in glioma cells were analyzed through integrative bioinformatics and TCGA RNA sequencing data analysis. Pathway enrichment analysis uncovered that FOXD2-AS1 was mainly linked with cell cycle regulation in both low-grade glioma and glioblastoma. Further experiments demonstrated that silence of FOXD2-AS1 inhibited proliferation, arrested cell cycle and downregulated cyclin-dependent kinase 1 (CDK1) in human glioma cells. Dual-luciferase reporter assay confirmed that FOXD2-AS1 upregulated CDK1 by sponging miR-31. Rescue assays were performed and confirmed the regulatory loop FOXD2-AS1/miR-31/CDK1 in glioma. Collectively, our results indicated that the FOXD2-AS1/miR-31/CDK1 axis influenced glioma progression, providing a potential new target for glioma patients.  相似文献   

20.
LBX2-AS1 is a long non-coding RNA that facilitates the development of gastrointestinal cancers and lung cancer, but its participation in ovarian cancer development remained uninvestigated. Clinical data retrieved from TCGA ovarian cancer database and the clinography of 60 ovarian cancer patients who received anti-cancer treatment in our facility were analysed. The overall cell growth, colony formation, migration, invasion, apoptosis and tumour formation on nude mice of ovarian cancer cells were evaluated before and after lentiviral-based LBX2-AS1 knockdown. ENCORI platform was used to explore LBX2-AS1-interacting microRNAs and target genes of the candidate microRNAs. Luciferase reporter gene assay and RNA pulldown assay were used to verify the putative miRNA-RNA interactions. Ovarian cancer tissue specimens showed significant higher LBX2-AS1 expression levels that non-cancerous counterparts. High expression level of LBX2-AS1 was significantly associated with reduced overall survival of patients. LBX2-AS1 knockdown significantly down-regulated the cell growth, colony formation, migration, invasion and tumour formation capacity of ovarian cancer cells and increased their apoptosis in vitro. LBX2-AS1 interacts with and thus inhibits the function of miR-455-5p and miR-491-5p, both of which restrained the expression of E2F2 gene in ovarian cancer cells via mRNA targeting. Transfection of miRNA inhibitors of these two miRNAs or forced expression of E2F2 counteracted the effect of LBX2-AS1 knockdown on ovarian cancer cells. LBX2-AS1 was a novel cancer-promoting lncRNA in ovarian cancer. This lncRNA increased the cell growth, survival, migration, invasion and tumour formation of ovarian cancer cells by inhibiting miR-455-5p and miR-491-5p, thus liberating the expression of E2F2 cancer-promoting gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号