首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A disintegrin and metalloproteinase 17 (ADAM17) is highly expressed in various tumours and affects tumour progression. In this study, ADAM17 expression in 60 gastric cancer and 20 normal gastric mucosal tissues was assessed using immunohistochemistry. ADAM17 expression was higher in gastric cancer tissues than in normal gastric mucosal tissues (P < 0.0005). A significant relationship was identified between ADAM17 expression and the depth of tumour invasion, metastasis, and carcinoma stage. Furthermore, the effects of ADAM17 knockdown on the proliferation, cell invasion, and apoptosis of human gastric carcinoma cells (SGC-7901) were determined. SGC-7901 cells were transfected with ADAM17-shRNA, and cell proliferation and migration were assessed using CCK-8 and transwell assays, respectively, to evaluate the role of ADAM17 in tumour proliferation and invasion. Furthermore, the EGFR signalling pathway, the cell membrane receptor-bound TNF-α level, and apoptosis were evaluated by western blotting and flow cytometry. The inhibition of cell proliferation and invasion was observed in the ADAM17 knockdown cells, which was associated with modulation of the EGFR signalling pathway. Apoptosis was increased, and TNF-α signalling was attenuated in the ADAM17 knockdown cells. Our study demonstrated that ADAM17 over-expression in gastric cancer tissues was closely associated with tumour proliferation, invasion, and apoptosis.  相似文献   

2.
Hepatocellular carcinoma (HCC) is one of the most common metastatic tumours. Tumour growth and metastasis depend on the induction of cell proliferation and migration by various mediators. Here, we report that the A Disintegrin and Metalloproteinase (ADAM) 8 is highly expressed in murine HCC tissues as well as in murine and human hepatoma cell lines Hepa1-6 and HepG2, respectively. To establish a dose-dependent role of different ADAM8 expression levels for HCC progression, ADAM8 expression was either reduced via shRNA- or siRNA-mediated knockdown or increased by using a retroviral overexpression vector. These two complementary approaches revealed that ADAM8 expression levels correlated positively with proliferation, clonogenicity, migration and matrix invasion and negatively with apoptosis of hepatoma cells. Furthermore, the analysis of pro-migratory and proliferative signalling pathways revealed that ADAM8 expression level was positively associated with expression of β1 integrin as well as with the activation of focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), Src kinase and Rho A GTPase. Finally, up-regulation of promigatory signalling and cell migration was also seen with a proteolytically inactive ADAM8 mutant. These findings reveal that ADAM8 is critically up-regulated in hepatoma cells contributes to cell proliferation and survival and furthermore induces pro-migratory signalling pathways independently of its proteolytic activity. By this, ADAM8 can promote cell functions most relevant for HCC growth and metastasis.  相似文献   

3.
G protein‐coupled estrogen receptor (GPER) is identified as a critical estrogen receptor, in addition to the classical estrogen receptors ERα and ERβ. In ERα‐negative ovarian cancer cells, our previous studies have found that estrogen stimulated cell proliferation and metastasis via GPER. However, the ligand‐independent function of GPER in ovarian cancer cells is still not clear. Herein, we describe that GPER has a co‐expression with ERα and ERβ, which are first determined in SKOV3 ovarian cancer cell line. In the absence of estrogen, GPER depletion by specific siRNA inhibits the proliferation, migration and invasion of SKOV3 cells. Whereas abrogation of ERα or ERβ by specific antagonist MPP and PHTPP has the opposite effects for stimulation of cell growth. Markedly, GPER knockdown attenuates MPP or PHTPP‐induced cell proliferation, migration and invasion. Furthermore, GPER modulates protein expression of the cell cycle critical components, c‐fos and cyclin D1 and factors for cancer cell invasion and metastasis, matrix metalloproteinase 2 (MMP‐2) and MMP‐9. These findings establish that GPER ligand‐independently stimulates the proliferation, migration and invasion of SKOV3 cells. Knockdown of GPER attenuates the progression of ovarian cancer that caused by functional loss of ERα or ERβ. Targeting GPER provides new aspect as a potential therapeutic strategy in ovarian cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
ADAM9 (A Disintegrin And Metalloproteinase 9) is a member of the ADAM protein family which contains a disintegrin domain. This protein family plays key roles in many physiological processes, including fertilization, migration, and cell survival. The ADAM proteins have also been implicated in various diseases, including cancer. Specifically, ADAM9 has been suggested to be involved in metastasis. To address this question, we generated ADAM9 knockdown clones of MDA-MB-231 breast tumor cells using silencing RNAs that were tested for cell adhesion, proliferation, migration and invasion assays. In RNAi-mediated ADAM9 silenced MDA-MB-231 cells, the expression of ADAM9 was lower from the third to the sixth day after silencing and inhibited tumor cell invasion in matrigel by approximately 72% when compared to control cells, without affecting cell adhesion, proliferation or migration. In conclusion, the generation of MDA-MB-231 knockdown clones lacking ADAM9 expression inhibited tumor cell invasion in vitro, suggesting that ADAM9 is an important molecule in the processes of invasion and metastasis.  相似文献   

5.
Song Y  Yang QX  Zhang F  Meng F  Li H  Dong Y  Han A 《Cancer epidemiology》2012,36(2):e116-e121
Aim: To investigate the role of β-catenin in pathogenesis of nasopharyngeal carcinoma (NPC). Methods: Cellular proliferation, apoptosis, matrix penetration assay, and western blotting were employed to determine cell biological changes in NPC cell lines transfected with β-catenin siRNA. Immunohistochemistry staining was used to detect β-catenin and Ki-67 expression in NPC tissue. Results: β-Catenin was upregulated in NPC cell lines and tissues compared with chronic nasopharyngitis tissue. β-Catenin knockdown dramatically inhibited cellular growth, migration and invasion, but induced apoptosis of NPC cells. Further study showed that downstream genes of β-catenin signaling pathway including cyclin D1, c-Myc, MMP2 and MMP9 expression were suppressed in NPC cell lines transfected with β-catenin siRNA. Conclusion: Targeting β-catenin signaling pathway may be a noval strategy for NPC therapy.  相似文献   

6.

Objectives

Long noncoding RNAs (lncRNAs) play important roles in cancer development and progression. The deregulated expression of LINC00978 has been reported in human cancers. However, the expression pattern and biological roles of LINC00978 in gastric cancer (GC) remain unclear. In this study, we investigated the potential roles and clinical value of LINC00978 in gastric cancer.

Materials and methods

QRT‐PCR was performed to investigate the expression of LINC00978 in gastric cancer cell lines, tissues and serum samples. Cell counting, colony formation, transwell migration and matrigel invasion assays were performed to determine the effects of shRNA‐mediated knockdown of LINC00978 on gastric cancer cell functions. In vivo tumour growth assay was also conducted. Flow cytometry, immunohistochemistry, western blot and qRT‐PCR were used for potential mechanism study.

Results

LINC00978 expression level was elevated in GC tumour tissues, serum samples and cell lines. The expression level of LINC00978 was significantly correlated with tumour size (= 0.02), lymphatic metastasis (= 0.009) and TNM stage (= 0.009). LINC00978 knockdown inhibited the proliferation of GC cells by suppressing cell cycle progression and inducing apoptosis. LINC00978 knockdown also inhibited the migration and invasion of GC cells. In addition, LINC00978 knockdown inhibited the activation of TGF‐β/SMAD signalling pathway and the process of epithelial‐mesenchymal transition (EMT) in GC cells. Moreover, the in vivo tumorigenicity of LINC00978 knockdown GC cells in mice was significantly decreased.

Conclusions

LINC00978 promotes gastric cancer progression and may serve as a potential biomarker for GC.  相似文献   

7.
This study aimed to explore the underlying mechanism of miR-513b and HMGB3 in regulating non-small-cell lung cancer (NSCLC). NSCLC tumor, adjacent tissues, and cell lines were extracted, and the expression of miR-513b and HMGB3 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis. Then, miR-513b was overexpressed in NSCLC cell, and the proliferation, migration, invasion, and apoptosis of cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), wound healing, transwell, and flow cytometry, respectively. Regulatory relationship between miR-513b and HMGB3 was determined using luciferase activity reporter assay. Lastly, HMGB3 and/or miR-513b were overexpressed in NSCLC cells, and the proliferation, migration, invasion, and apoptosis of cells were determined. Compared with the controls, the expression of miR-513b was significantly downregulated in the NSCLC tissues and cells lines by RT-qPCR ( p < 0.05). However, the expression of HMGB3 was significantly downregulated at both messenger RNA and protein levels ( p < 0.05). Overexpression of miR-513b could significantly inhibit the proliferation, invasion, migration, and promote apoptosis of NSCLC cells ( p < 0.05). HMGB3 was a target of miR-513b, and overexpression of HMGB3 could obviously reverse the effect of miR-513 on the proliferation, invasion, migration, and apoptosis of NSCLC cells ( p < 0.05). The present results could suggest miR-513b was downregulated in NSCLC and could regulate the proliferation, invasion, migration, and apoptosis of NSCLC cells via HMGB3.  相似文献   

8.
The peritoneum, especially the omentum, is a common site for gastric cancer (GC) metastasis. Our aim was to expound the role and mechanisms of Piezo1 on GC omentum metastasis. A series of functional assays were performed to examine cell proliferation, clone formation, apoptosis, Ca2+ influx, mitochondrial membrane potential (MMP) and migration after overexpression or knockdown of Piezo1. A GC peritoneal implantation and metastasis model was conducted. After infection by si-Piezo1, the number and growth of tumours were observed in abdominal cavity. Fibre and angiogenesis were tested in metastatic tumour tissues. Piezo1 had higher expression in GC tissues with omentum metastasis and metastatic lymph node tissues than in GC tissues among 110 patients. High Piezo1 expression was associated with lymph metastasis, TNM and distant metastasis. Overexpressed Piezo1 facilitated cell proliferation and suppressed cell apoptosis in GC cells. Moreover, Ca2+ influx was elevated after up-regulation of Piezo1. Piezo1 promoted cell migration and Calpain1/2 expression via up-regulation of HIF-1α in GC cells. In vivo, Piezo1 knockdown significantly inhibited peritoneal metastasis of GC cells and blocked EMT process and angiogenesis. Our findings suggested that Piezo1 is a key component during GC omentum metastasis, which could be related to up-regulation of HIF-1α.  相似文献   

9.
《Genomics》2023,115(4):110641
BackgroundGastric cancer (GC) is a common cancer with a high incidence and mortality rate. Herein, the role of hsa_circ_0002019 (circ_0002019) in GC was investigated.MethodsThe molecular structure and stability of circ_0002019 were identified by RNase R, and Actinomycin D treatment. Molecular associations were verified by RIP. Proliferation, migration, and invasion were detected by CCK-8, EdU, and Transwell, respectively. The effect of circ_0002019 on tumor growth was analyzed in vivo.ResultsCirc_0002019 was elevated in GC tissues and cells. Circ_0002019 knockdown inhibited the proliferation, migration, and invasion. Mechanically, circ_0002019 activated NF-κB signaling by increasing TNFAIP6 mRNA stability by PTBP1. Activation of NF-κB signaling limited the antitumor effect of circ_0002019 silencing in GC. Circ_0002019 knockdown inhibited tumor growth in vivo by reducing TNFAIP6 expression.ConclusionsCirc_0002019 accelerated the proliferation, migration, and invasion by regulating TNFAIP6/NF-κB pathway, suggesting circ_0002019 could be a key regulatory factor in GC progression.  相似文献   

10.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

11.
The significance of actin-related protein 2/3 complex subunit 4 (ARPC4) expression in bladder cancer, and its potential role in the invasion and migration of bladder cancer cells, has yet to be determined. This study was to identify the correlation between ARPC4 and lymph node metastasis, and to determine the role of ARPC4 in the invasive migration of T24 bladder cancer cells. One hundred and ninety-eight bladder cancer tissues and 40 normal bladder and lymph node tissues were examined. Tissue microarrays were constructed and subjected to immunohistochemical stating for ARPC4. Multiple logistic analysis was used to determine risk factors associated with bladder cancer metastasis. ARPC4 expression in T24 bladder cancer cells was suppressed using small interfering RNA and changes in protein levels were determined by Western blot analysis. The proliferation of bladder cancer cells after knocking down of ARPC4 was determined by cell counting kit-8. The effects of ARPC4 knockdown on T24 cell invasion and migration was determined using transwell and wound healing assays. Immunofluorescence analysis was performed to examine changes in pseudopodia formation and actin cytoskeleton structure. The expression of ARPC4 was elevated in bladder cancer tissues than normal tissues (84.3% vs 27.5%, P < 0.001). The multivariate logistic analysis demonstrated that the level of ARPC4, as a risk factor, was correlated with lymphatic metastasis (P < 0.05). ARPC4 knockdown attenuated proliferation, migration, invasion, and pseudopodia formation in T24 cells. ARPC4 expression, as a risk factor, is associated with lymphatic metastasis and is upregulated in bladder cancer tissues in comparison with normal tissues. Inhibition of ARPC4 expression significantly attenuates the proliferation, migration, and invasion of bladder cancer cell, possibly due to defects in pseudopodia formation.  相似文献   

12.
CD155, one of the nectin‐like molecule family members, is involved in cell adhesion and motility. CD155 is overexpressed in several human cancers, but its role in proliferation and apoptosis of colorectal cancer remains unclear. We found that CD155 was up‐regulated in colorectal cancer tissues. CD155 knockdown via shRNA lentiviruses inhibited colon cancers cell migration and invasion, with a reduction in the expression of FAK, Src and MMP‐2. CD155 down‐regulation also suppressed colon cancer cell proliferation, accompanied by changing expressions of some molecules related to cell cycle. Finally, CD155 knockdown increased the expression ratio between Bax and Bcl‐2, resulting in a significant increase in colon cancer cell apoptosis. Taken together, these results demonstrate that CD155 is involved in not only migration and invasion but also proliferation and survival abilities of colon cancer cells, suggesting that CD155 is one of key molecules promoting the growth and metastasis of colorectal cancer.  相似文献   

13.
Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide. HCC has traits of late diagnosis and high recurrence. This study explored potential diagnosis and prognosis significance of phospholipase C epsilon 1 (PLCE1) in HCC. The messenger RNA (mRNA) levels and diagnostic value of PLCE1 were determined by real-time polymerase chain reaction and online databases GEPIA, oncomine, and GSE14520 data set. Survival analysis used the Kaplan–Meier Plotter website. Cell cycle, proliferation, migration, and invasion assays were performed with downregulated PLCE1 expression in HCC-M and HepG2 cell lines. PLCE1 was differentially expressed and highly expressed in tumors and had low expression in nontumor tissues (all p < .05). The diagnostic value of PLCE1 was validated with the datasets (all p < .01, all areas under curves > 0.7). PLCE1 mRNA expression was associated with the overall and relapse-free survival (both p < .05). Functional experiments indicated that downregulation of PLCE1 expression led to increased G1 stage in cell cycle and decreased cell proliferation, migration, and invasion compared with a negative control group (all p ≤ .05). The oncogene PLCE1 was differentially expressed in HCC and non-HCC tissues. It is a candidate for diagnosis and serves as prognosis biomarker. PLCE1 influenced survival by affecting the cell cycle, proliferation, migration, and invasion ability.  相似文献   

14.
Aberrant expression of microRNAs (miRNAs) has been shown to play important roles in cancer progression as a result of changes in expression of their target genes. In this study, we investigated the roles of miR-520d-3p on gastric cancer (GC) cell proliferation, migration, and invasion, and confirmed that this miRNA regulates EphA2 expression. The mRNA expression levels of miR-520d-3p and EphA2 in GC tissues and cell lines were evaluated. The clinical and prognostic significance of miR-520d-3p was assessed. The biological function of miR-520d-3p in GC cells was investigated using a methylthiazolyldiphenyl-tetrazolium bromide assay, cell cycle assay, transwell invasion assay, and wound-healing assay. miR-520d-3p expression was down-regulated and inversely correlated with the expression of EphA2 in GC tissues and cell lines. Lower expression of miR-520d-3p was associated with tumor invasion (P = 0.0357), lymph nodes metastasis (P = 0.0272), a higher clinical stage (P = 0.0041), and poorer overall survival (P = 0.0105). Luciferase assays revealed that miR-520d-3p inhibited EphA2 expression by targeting the 3′-untranslated region of EphA2 mRNA. Overexpression of miR-520d-3p dramatically inhibited the proliferation, cell cycle progression, invasion, and migration of GC cells, while down-regulation substantially promoted these properties. Moreover, c-Myc, CyclinD1, and matrix metalloproteinase-9 expression levels were down-regulated in miR-520d-3p mimic-transfected cells and up-regulated in miR-520d-3p inhibitor-transfected cells. Taken together, our data showed that miR-520d-3p appears to contribute to GC progression via the regulation of EphA2 and could serve as a novel prognostic and potential therapeutic marker.  相似文献   

15.
16.
17.

Objectives

Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti‐inflammatory, anti‐oxidant and anti‐cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells.

Materials and methods

Cell proliferation and cell cycle distribution were measured by water‐soluble tetrazolium‐1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin‐6 (IL‐6)‐inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays.

Results

Capillarisin inhibited androgen‐independent DU145 and androgen‐dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP‐2, and MMP‐9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL‐6‐inducible STAT3 activation in DU145 and LNCaP cells.

Conclusions

Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP‐2, MMP‐9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL‐6‐inducible STAT3 activation.
  相似文献   

18.
Nearly 60% of patients with head and neck squamous cell carcinoma (HNSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell migration and invasion, which are in part dependent on extracellular matrix degradation by matrix metalloproteinases. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies, and has been shown to upregulate matrix metalloproteinase (MMP) expression and activity. To determine how OA modulates MMP expression and activity in HNSCC, and to investigate OA effects on cell invasion, we assessed effects of OA treatment on MMP mRNA and protein expression, as well as gelatinase and caseinolytic activity in HNSCC cell lines. We assessed the effects of OA gene silencing on MMP expression, gelatinase and caseinolytic activity, and cell invasion. OA treatment had differential effects on MMP mRNA expression. OA treatment upregulated MMP‐10 expression in UMSCC14a (p = 0.0431) and SCC15 (p < 0.0001) cells, but decreased MMP‐9 expression in UMSCC14a cells (p = 0.0002). OA gene silencing decreased MMP‐10 expression in UMSCC12 cells (p = 0.0001), and MMP‐3 (p = 0.0005) and ‐9 (p = 0.0036) expression in SCC25 cells. In SCC15 and SCC25 cells, OA treatment increased MMP‐2 (p = 0.0408) and MMP‐9 gelatinase activity (p < 0.0001), respectively. OA depletion decreased MMP‐2 (p = 0.0023) and ‐9 (p < 0.0001) activity in SCC25 cells. OA treatment increased 70 kDa caseinolytic activity in UMSCC12 cells consistent with tissue type plasminogen activator (p = 0.0078). OA depletion decreased invasive capacity of UMSCC12 cells (p < 0.0001). OA's effects on MMP expression in HNSCC are variable, and may promote cancer cell invasion.  相似文献   

19.

Background

Herein, for the first time, we report aberrant expression of membrane-associated RING-CH8 (MARCH8) in human esophageal squamous cell carcinoma. MARCH8 is a member of the recently discovered MARCH family of really interesting new genes (RING) E3 ligases. Though initial studies primarily focused on its immunomodulatory role, the newly discovered targets of this E3 ligase point towards its possible role in other biological processes such as embryogenesis and inhibition of apoptosis. However, its relevance in cancers is yet to be elucidated.

Methods

We carried out quantitative real time PCR and immunohistochemistry to examine the levels of MARCH8 mRNA and protein in esophageal squamous cell carcinoma tissues. The role of MARCH8 in esophageal cancer cells was evaluated by cell proliferation, clonogenic and migration/invasion assays and flow cytometry with MARCH8 gene knockdown.

Results

Significantly increased expression of MARCH8 mRNA was found in esophageal squamous cell carcinoma as compared to distant matched non-malignant tissues (p = 0.024, AUC = 0.654). Immunohistochemical analysis revealed overexpression of MARCH8 protein in 86% of esophageal squamous cell carcinoma tissues (p < 0.001, AUC = 0.908). Interestingly, intense nuclear staining of MARCH8 protein was detected in cancer cells in addition to its cytoplasmic expression. Knockdown of MARCH8 resulted in decreased proliferation, migration, invasion and clonogenic potential of esophageal cancer cells. In addition to this, silencing of MARCH8 induced apoptosis in esophageal cancer cells which was measured by cell cycle distribution assay which showed increase in sub G0 and G2/M populations (cell death) and decrease in S-phase population. To further check the type of apoptosis induced by MARCH8 silencing, annexin assay was performed which showed significant increase in the number of cells in early apoptotic phase.

Conclusions

Overall, increased expression of MARCH8 gene in preneoplastic and neoplastic esophageal tissues and its knockdown effect on cancer cell properties demonstrated herein points towards the potential role of this protein in esophageal tumorigenesis.
  相似文献   

20.
The kinesin family member 14 (KIF14) is a potential oncogene and is involved in the metastasis of various cancers. Nevertheless, its function in gastric cancer (GC) remains poorly defined. The expression of KIF14 was examined in GC cell lines and a clinical cohort of GC specimens by qPCR, western blotting and immunohistochemistry (IHC) staining. The relationship between KIF14 expression and the clinicopathological features was analyzed. The effect of KIF14 on cell proliferation, colony formation, invasion and migration were investigated in vitro and in vivo. The expression of KIF14 was significantly increased in the GC tissues and cell lines. High KIF14 expression was associated with tumor stage, tumor-node-metastasis (TNM) stage and metastasis. KIF14 was an independent prognostic factor for the overall survival of GC, and a higher expression of KIF14 predicted a poorer survival. KIF14 silencing resulted in attenuated proliferation, invasion and migration in human gastric cancer cells, whereas KIF14 ectopic expression facilitated these biological abilities. Notably, the depressed expression of KIF14 inhibited Akt phosphorylation, while overexpressed KIF14 augmented Akt phosphorylation. Additionally, there was a significant correlation between the expression of KIF14 and p?Akt in GC tissues. Importantly, the proliferation, invasion and migration of the GC cells, which was promoted by KIF14 overexpression, was abolished by the Akt inhibitor MK-2206, while Akt overexpression greatly rescued the effects induced by KIF14 knockdown. Our findings are the first to demonstrate that KIF14 is overexpressed in GC, is correlated with poor prognosis and plays a crucial role in the progression and metastasis of GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号