首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
4.
The paper describes a potent purification method, preparative gel retention, for the purification of sequence-specific DNA-binding proteins. This procedure exploits the sequence-specific DNA-binding affinity of such proteins for their enrichment, comparable to recognition site DNA affinity chromatography. The method was employed to obtain a pure preparation of nuclear factor I (NFI) from porcine liver from which sequences of partial peptides could be obtained. Oligonucleotide probes derived from these amino-acid sequences were used to identify genomic and cDNA clones of NFI.  相似文献   

5.
The paper describes a potent purification method, preparative gel retention, for the purification of sequence-specific DNA-binding proteins. This procedure exploits the sequence-specific DNA-binding affinity of such proteins for their enrichment, comparable to recognition site DNA affinity chromatography. The method was employed to obtain a pure preparation of nuclear factor I (NFI) from porcine liver from which sequences of partial peptides could be obtained. Oligonucleotide probes derived from these amino-acid sequences were used to identify genomic and cDNA clones of NFI.  相似文献   

6.
We have examined parameters that affect sequence-specific interactions of the mouse c-myb protein with DNA oligomers containing the Myb-binding motif (CA/CGTTPu). Complexes formed between these oligomers and in vitro translated c-myb proteins were analysed by electrophoresis on non-denaturing polyacrylamide gels using the mobility-shift assay. By progressive truncation of c-myb coding sequences it was demonstrated that amino acids downstream of a region of three imperfect 51-52 residue repeats (designated R1, R2 and R3), which are located close to the amino terminus of the protein, had no qualitative or quantitative effect on the ability to interact specifically with this DNA motif. However, removal of only five amino acids of the R3 repeat completely abolished this activity. The contribution of individual DNA-binding domain repeats to this interaction was investigated by precisely deleting each individually: it was demonstrated that a combination of R2 and R3 was absolutely required for complex formation while the R1 repeat was completely dispensible. c-myb proteins showed quantitatively greater interaction with oligomers containing duplicated rather than single Myb-binding motif, in particular where these were arranged in tandem. Moreover, it was observed that c-myb protein interacted with these tandem motifs as a monomer. These findings imply that a single protein subunit straddles adjacent binding sites and the implications for c-myb activity are discussed.  相似文献   

7.
The concept that the tumor suppressor p53 is a latent DNA-binding protein that must become activated for sequence-specific DNA binding recently has been challenged, although the "activation" phenomenon has been well established in in vitro DNA binding assays. Using electrophoretic mobility shift assays and fluorescence correlation spectroscopy, we analyzed the binding of "latent" and "activated" p53 to double-stranded DNA oligonucleotides containing or not containing a p53 consensus binding site (DNAspec or DNAunspec, respectively). In the absence of competitor DNA, latent p53 bound DNAspec and DNAunspec with high affinity in a sequence-independent manner. Activation of p53 by the addition of the C-terminal antibody PAb421 significantly decreased the binding affinity for DNAunspec and concomitantly increased the binding affinity for DNAspec. The net result of this dual effect is a significant difference in the affinity of activated p53 for DNAspec and DNAunspec, which explains the activation of p53. High affinity nonspecific DNA binding of latent p53 required both the p53 core domain and the p53 C terminus, whereas high affinity sequence-specific DNA binding of activated p53 was mediated by the p53 core domain alone. The data suggest that high affinity nonspecific DNA binding of latent and high affinity sequence-specific binding of activated p53 to double-stranded DNA differ in their requirement for the C terminus and involve different structural features of the core domain. Because high affinity nonspecific DNA binding of latent p53 is restricted to wild type p53, we propose that it relates to its tumor suppressor functions.  相似文献   

8.
9.
We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with impractically low DNA yields. We have optimized the procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 microg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required.  相似文献   

10.
11.
Teter B  Goodman SD  Galas DJ 《Plasmid》2000,43(1):73-84
The binding of many proteins to DNA is profoundly affected by DNA bending, twisting, and supercoiling. When protein binding alters DNA conformation, interaction between inherent and induced DNA conformation can affect protein binding affinity and specificity. Integration host factor (IHF), a sequence-specific, DNA-binding protein of Escherichia coli, strongly bends the DNA upon binding. To assess the influence of inherent DNA bending on IHF binding, we took advantage of the high degree of natural static curvature associated with an IHF site on a 163-bp minicircle and measured the binding affinity of IHF for its recognition site contained on this DNA in both circular and linear form. IHF showed a higher affinity for the circular form of the DNA when compared to the linear form. In addition, the presence of IHF during DNA cyclization changed the topology of cyclization products and their ability to bind IHF, consistent with IHF untwisting DNA. These results show that inherent DNA conformation anisotropy is an important determinant of IHF binding affinity and suggests a mechanism for modulation of IHF activity by local DNA conformation.  相似文献   

12.
13.
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.  相似文献   

14.
MDBP is a sequence-specific DNA-binding protein from mammals that recognizes a variety of DNA sequences, all of which show much homology to a partially palindromic 14 base-pair consensus sequence. MDBP subjected to limited proteolysis and then incubated with various specific oligonucleotide duplexes yielded two types of complexes. The relative concentrations of these complexes varied greatly depending on how closely the MDBP site matched the consensus sequence. No such DNA sequence-specific differences in the types of complexes formed were seen with intact MDBP. Partial proteolysis also changed the relative affinity of MDBP for several of its binding sites. The nature of the two types of complexes formed from fragmented MDBP and DNA was studied by DNA competition assays, protein titration, site-directed mutagenesis, and dimethyl sulfate and missing base interference assays. The results suggest that, for some specific DNA sequences, half-site interactions with one MDBP subunit predominate and for others, strong interaction of two subunits with both half-sites readily occur.  相似文献   

15.
16.
The two major DNA-binding proteins of human serum (DNA-binding protein 1 and DNA-binding protein 2) were shown to bind preferentially to single-stranded polynucleotides rich in guanine residues. Equilibrium competition experiments using a nitrocellulose filter assay system containing labeled human lymphocyte DNA and various competing natural and synthetic polynucleotides indicated that both proteins recognized sequences of bases containing a keto group in either position 6 (purines) or 4 (pyrimidines) and that these keto groups must be readily accessible for effective binding to occur. Guanine was shown to be the preferred nucleotide through inhibition experiments using a series of synthetic homopolymers and a series of bacterial DNAs of differing G + C content. The relationship between protein affinity and G + C content was shown to be directly proportional. The equilibrium constants for the binding of the human lymphocyte DNA by both proteins were on the order of 10(-6) M, and the length of the nucleotide sequence necessary for effective binding was found to be 12 to 18 bases using a series of oligomers of poly(dG).  相似文献   

17.
18.
19.
Naturally elaborated membrane bleb fractions BI and BII of Neisseria gonorrhoeae contain both linear and circular DNAs. Because little is known about the interactions between DNA and blebs, studies were initiated to identify specific proteins that bind DNA in elaborated membrane blebs. Western immunoblots of whole-cell and bleb proteins from transformation-competent and DNA-uptake-deficient (dud) mutants were probed with single- or double-stranded gonococcal DNA, pBR322, or synthetic DNA oligomers containing intact or altered gonococcal transformation uptake sequences. The specificity and sensitivity of a nonradioactive DNA-binding protein assay was evaluated, and the assay was used to visualize DNA-protein complexes on the blots. The complexes were then characterized by molecular mass, DNA-binding specificity, and expression in bleb fractions. The assay effectively detected blotted DNA-binding proteins. At least 17 gonococcal DNA-binding proteins were identified; unique subsets occurred in BI and BII. Certain DNA-binding proteins had varied affinities for single- and double-stranded DNA, and the intact transformation uptake sequence competitively displaced the altered sequence from a BI protein at 11 kilodaltons (kDa). A dud mutant, strain FA660, lacked DNA-binding activity at the 11-kDa protein in BI. The segregation of DNA-binding proteins within BI and BII correlates with their distinct protein profiles and suggests that these vesicles may play different roles. Although the DNA-binding proteins expressed in BII may influence the nuclease-resistant export of plasmids within BII vesicles, the BI 11-kDa protein may bind transforming DNA.  相似文献   

20.
Incorporation of the DNA-cleaving moiety EDTA.Fe at discrete amino acid residues along a DNA-binding protein allows the positions of these residues relative to DNA bases, and hence the organization of the folded protein, to be mapped by high-resolution gel electrophoresis. A 52-residue protein, based on the sequence-specific DNA-binding domain of Hin recombinase (139-190), with EDTA at the NH2 terminus cleaves DNA at Hin recombination sites. The cleavage data for EDTA-Hin(139-190) reveal that the NH2 terminus of Hin(139-190) is bound in the minor groove of DNA near the symmetry axis of Hin-binding sites [Sluka, J. P., Horvath, S. J., Bruist, M. F., Simon, M. I., & Dervan, P. B. (1987) Science 238, 1129]. Six proteins, varying in length from 49 to 60 residues and corresponding to the DNA-binding domain of Hin recombinase, were synthesized by solid-phase methods: Hin(142-190), Hin(141-190), Hin(140-190), Hin(139-190), Hin(135-190), and Hin(131-190) were prepared with and without EDTA at the NH2 termini in order to test the relative importance of the residues Gly139-Arg140-Pro141-Arg142, located near the minor groove, for sequence-specific recognition at five imperfectly conserved 12-base-pair binding sites. Footprinting and affinity cleaving reveal that deletion of Gly139 results in a protein with affinity and specificity similar to those of Hin(139-190) but that deletion of Gly139-Arg140 affords a protein with altered affinities and sequence specificities for the five binding sites. It appears that Arg140 in the DNA-binding domain of Hin is important for recognition of the 5'-AAA-3' sequence in the minor groove of DNA. Our results indicate modular DNA and protein interactions with two adjacent DNA sites (major and minor grooves, respectively) bound on the same face of the helix by two separate parts of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号