首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

A self-referencing plasmonic platform is proposed and analyzed. By introducing a thin gold layer below a periodic two-dimensional nano-grating, the structure supports multiple modes including localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), and Fabry-Perot resonances. These modes get coupled to each other creating multiple Fano resonances. A coupled mode between the LSPR and SPR responses is spatially separated from the sensor surface and is not sensitive to refractive index changes in the surrounding materials or surface attachments. This mode can be used for self-referencing the measurements. In contrast, the LSPR dominant mode shifts in wavelength when the refractive index of the surrounding medium is changed. The proposed structure is easy to fabricate using conventional lithography and electron beam deposition methods. A bulk sensitivity of 429 nm/RIU is achieved. The sensor also has the ability to detect nanometer thick surface attachments on the top of the grating.

  相似文献   

2.
A fiber optic surface plasmon resonance (SPR) biosensor for detection of Staphylococcal enterotoxin B (SEB) is reported. The sensor is based on spectral interrogation of surface plasmons in a miniature sensing element based on a side-polished single-mode optical fiber with a thin metal overlayer. For specific detection of SEB, the SPR sensor is functionalized with a covalently crosslinked double-layer of antibodies against SEB. The SPR biosensor is demonstrated to be able to detect ng/ml concentrations of SEB in less than 10 min.  相似文献   

3.
In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.  相似文献   

4.
A biosensor based on the surface plasmon resonance (SPR) principle was used for kinetic analysis of lectin interactions with different immobilized saccharide structures. A novel affinity ligands beta-D-glycopyranosylmethylamines derived from common D-aldohexoses linked to the carboxymethyl dextran layer of the SPR sensor surface served for interactions with a wide range of lectins. The method of preparation and use of the beta-D-mannopyranosyl glycosylated sensor surface was described. The results of affinity analysis of lectin-ligand interactions were evaluated and compared with data obtained from measurements using commercially available p-aminophenyl alpha-D-glycopyranosides. Possible applications and advantages of C- and O-glycosylated SPR biosensors are discussed.  相似文献   

5.
Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodbome pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spreeta biosensor kits were used to detect Salmonella Typhimurium on chicken carcass successfully. A taste sensor like electronic tongue or biosensors was used to basically "taste" the object and differentiated one object from the other with different taste sensor signatures. The surface plasmon resonance biosensor has potential for use in rapid, real-time detection and identification of bacteria, and to study the interaction of organisms with dif- ferent antisera or other molecular species. The selectivity of the SPR biosensor was assayed using a series of antibody con- centrations and dilution series of the organism. The SPR biosensor showed promising to detect the existence of Salmonella Typhimurium at 1 x 106 CFU/ml. Initial results show that the SPR biosensor has the potential for its application in pathogenic bacteria monitoring. However, more tests need to be done to confirm the detection limitation.  相似文献   

6.
Surface plasmon resonance (SPR) biosensors offer the capability for continuous real-time monitoring. The commercial instruments available have been large in size, expensive, and not amenable to field applications. We report here an SPR sensor system based on a prototype two-channel system similar to the single channel Spreeta devices. This system is an ideal candidate for field use. The two-channel design provides a reference channel to compensate for bulk refractive index (RI), non-specific binding and temperature variations. The SPR software includes a calibration function that normalizes the response from both channels, thus enabling accurate referencing. In addition, a temperature-controlled enclosure utilizing a thermo-electric module based on the Peltier effect provides the temperature stability necessary for accurate measurements of RI. The complete SPR sensor system can be powered by a 12V battery. Pre-functionalized, disposable, gold-coated thin glass slides provide easily renewable sensor elements for the system. Staphylococcus aureus enterotoxin B (SEB), a small protein toxin was directly detectable at sub-nanomolar levels and with amplification at femtomolar levels. A regeneration procedure for the sensor surface allowed for over 60 direct detection cycles in a 1-month period.  相似文献   

7.

In this work, a label-free and inexpensive method for the monitoring of water pollutants is demonstrated. We introduce a localized surface plasmon resonance (LSPR) based plasmonic capillary optical biosensor to detect microalgae cells. Here, the plasmonic capillary biosensor was prepared by decorating the inner walls of a glass capillary with gold nanoparticles that were employed for investigations. Since the gold nanoparticle has the potential to sense pollutants in water rapidly with high sensitivity and they are expected to perform a significant role in environmental monitoring. Our proposed plasmonic capillary sensor has a detection limit of 25 algal cells (Chlorella sp. CB4). Furthermore, the plasmonic capillary sensing platform significantly simplifies sensor fabrication and reduces the cost of the device. We believe that the presented plasmonic sensor could stand as a potential candidate for developing a cost-effective, label-free, and rapid sensing platform to detect microalgae pollutants present in the water at very low concentrations.

  相似文献   

8.
Han  Lei  Zhao  Xiang  Huang  Tianye  Ding  Huafeng  Wu  Chuan 《Plasmonics (Norwell, Mass.)》2019,14(6):1743-1750
Plasmonics - Surface plasmon resonance (SPR) biosensor is widely used for its high precision and real-time analysis. In this paper, SPR biosensor based on the hybrid structure of metal–indium...  相似文献   

9.
Han  Lei  Wu  Chuan 《Plasmonics (Norwell, Mass.)》2019,14(4):901-906
Plasmonics - In this paper, a surface plasmon resonance (SPR) sensor based on the hybrid structure of silver (Ag)-indium tin oxide (ITO)-graphene is proposed and investigated. SPR biosensors are...  相似文献   

10.
High-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of nucleic acids identifying specific bacterial pathogens is reported. The biosensor consists of a high-performance SPR imaging sensor with polarization contrast and internal referencing (refractive index resolution 2 x 10(-7) RIU) and an array of DNA probes microspotted on the surface of the SPR sensor. It is demonstrated that short sequences of nucleic acids (20-23 bases) characteristic for bacterial pathogens such as Brucella abortus, Escherichia coli, and Staphylococcus aureus can be detected at 100 pM levels. Detection of specific DNA or RNA sequences can be performed in less than 15 min by the reported SPR sensor.  相似文献   

11.
Surface plasmon resonance (SPR) biosensors are affinity sensing devices exploiting a special mode of electromagnetic field-surface plasmon-polariton-to detect the binding of analyte molecules from a liquid sample to biomolecular recognition elements immobilized on the surface of the sensor. In this paper, we review advances of SPR biosensor technology towards detection systems for the simultaneous detection of multiple analytes (multi-analyte detection). In addition, we report application of a recently developed multichannel SPR sensor based on spectroscopy of surface plasmons and wavelength division multiplexing of sensing channels to multi-analyte detection.  相似文献   

12.
In this study, we theoretically investigate the sensing potential of 2D nano- and micro-ribbon grating structuration on the surface of Kretschmann-based surface plasmon resonance (SPR) biosensors when they are employed for detection of biomolecular binding events. Numerical simulations were carried out by employing a model based on the hybridization of two classical methods, the Fourier modal method and the finite element method. Our calculations confirm the importance of light manipulation by means of structuration of the plasmonic thin film surfaces on the nano- and micro-scales. Not only does it highlight the geometric parameters that allow the sensitivity enhancement compared with the response of the conventional SPR biosensor based on a flat surface but also describes the transition from the regime where the propagating surface plasmon mode dominates to the regime where the localized surface plasmon mode dominates. An exhaustive mapping of the biosensing potential of the 2D nano- and micro-structured biosensors surface is presented, varying the structural parameters related to the ribbon grating dimensions, i.e., the widths and thicknesses. The nano- and micro-structuration also leads to the creation of regions on biosensor chips that are characterized by strongly enhanced electromagnetic (EM) fields. New opportunities for further improving the sensitivity are offered if localization of biomolecules can be carried out in these regions of high EM fields. The continuum of nano- and micro-ribbon structured biosensors described in this study should prove a valuable tool for developing sensitive and reliable 2D-structured plasmonic biosensors.  相似文献   

13.
Yuk JS  Jung SH  Jung JW  Hong DG  Han JA  Kim YM  Ha KS 《Proteomics》2004,4(11):3468-3476
We have investigated whether surface plasmon resonance (SPR) sensors based on the wavelength interrogation are able to analyze protein interactions on protein arrays. The spectral SPR sensor was self-constructed and its detection limit, expressed as the minimal refractive index variation, was calculated to be 6.6x10(-5) with the signal fluctuation of 1.0x10(-5). The protein array surface was modified by a mixed thiol monolayer to immobilize proteins. Protein arrays were analyzed by the line-scanning mode of the SPR sensor, which scanned every 100 microm along the central line of array spots and the scanned results were presented by color spectra from blue to red. Glutathione S-transferase (GST)-rac1 caused a concentration-dependent increase of SPR wavelength shift on protein arrays. The surface structure of the protein arrays was analyzed by atomic force microscopy. Specific interactions of antigens with antibodies were analyzed on the protein arrays by using three antibodies and eight proteins. These results suggest that the wavelength interrogation-based SPR sensor can be used as the biosensor for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

14.
A biosensor based on surface plasmon resonance (SPR) is developed for the detection of 2-hydroxybiphenyl (HBP). A monoclonal antibody against HBP (abbreviated hereafter as HBP-mAb) is developed and used for the detection of HBP by competitive SPR-based immunoassay and enzyme linked immunosorbent assay (ELISA) methods. A novel HBP-hapten compound, HBP-bovine serum albumin conjugate (HBP-BSA), derived by binding several HBP units with BSA by an aliphatic chain spacer is used in the development of antibody and for the functionalization of immunoprobes. HBP-BSA linked to the Au surface of the SPR sensor chip undergoes inhibitive immunoreaction with HBP-mAb in the presence of free HBP. The SPR-based immunoassay provides a rapid determination (response time: approximately 20 min) of the concentration of HBP in the range of 0.1-1000 ppb (ng/ml). Regeneration of the sensor chip is gained by treating the antibody-anchored SPR sensor chip with a pepsin solution (100 ppm (microg/ml); pH 2.0) for few minutes. The SPR sensor chip is reusable for the detection of HBP for more than 20 cycles with average loss of 0.35% reactivity per regeneration step. HBP concentration is determined as low as 0.1 and 3 ppb using the SPR sensor and ELISA measurements, respectively. The developed SPR sensor for HBP is free from interference by coexisting benzo[a]pyrene (BaP), 2,4-dichlorophenoxyacetic acid (2,4-D) and benz[a]anthracene; SPR angle shift obtained to the flow of HBP is almost same irrespective to the presence or absence of a same concentration of these carcinogenic polycyclic aromatic hydrocarbons together. The SPR sensor for HBP is proved to be applicable in simultaneous detection of HBP and BaP in parallel with another SPR sensor for BaP.  相似文献   

15.

This paper deals with the development and analysis of D-Shaped photonic crystal fiber (PCF) biosensors using surface plasmon resonance (SPR). A thin metal layer is deposited on the outer flat surface of the PCF that behaves as the plasmonic material. Analyte is filled in the outermost peripheral region of metal layer. Finite element method (FEM) with perfectly matched layer (PML) is applied to analyze the proposed sensors. Mode analysis is performed on the proposed structures to evaluate various parameters of SPR-based PCF sensors. Three D-shaped PCF structures have been proposed with silver (Ag), gold (Au) and two-half layers of both (Ag-Au) on its flat surface. The first two structures are analyzed to the range of wavelength where the SPR will occur to facilitate understanding of the third structure. It is observed that the structures with one metal have only one sensitive plasmonic peak whereas the structure with two metal layers has two sensitive plasmonic peaks, making it suitable candidate for two-molecule sensing present in a sample analyte. Good sensitivities and resolutions are achieved for both plasmonic peaks.

  相似文献   

16.
Here, we reported the development of a label-free and real-time surface plasmon resonance (SPR) based biosensor for cancer stem cells (CSCs) detection using cell surface biomarker; CD133. The fabricated biosensor was used for detection of this marker in some acute myeloid leukemia (AML) patients and the results were compared with those obtained from flow cytometry (FC) method. CD133 antibody was immobilized on the gold chip surface via EDC/NHS coupling method and binding of the candidate cells to the modified gold sensor surface was monitored after isolation of mononuclear cells from bone marrow of the patients. The method was validated in terms of various parameters such as CD133- antibody concentration and cell density. The CD133-marked cells were investigated in seven AML patients. All SPR results were compared with those obtained from FC method. A very good correlation (R2 = 0.96) was obtained between SPR and FC responses related to CD133-marked cells densities. In conclusion, in this study, a label-free and real-time SPR cytometry method was developed to detect CD133 and it was successfully applied to follow this cancer stem cell biomarker in AML patients.  相似文献   

17.
This paper reports the application of differential phase surface plasmon resonance (SPR) imaging in two-dimensional (2D) protein biosensor arrays. Our phase imaging approach offers a distinct advantage over the conventional angular SPR technique in terms of utilization efficiency of optical sensor elements in the imaging device. In the angular approach, each biosensor site in the biosensor array requires a linear array of optical detector elements to locate the SPR angular dip. The maximum biosensor density that a two-dimensional imaging device can offer is a one-dimensional SPR biosensor array. On the other hand, the phase-sensitive SPR approach captures data in the time domain instead of the spatial domain. It is possible that each pixel in the captured interferogram represents one sensor site, thus offering high-density two-dimensional biosensor arrays. In addition, our differential phase approach improves detection resolution through removing common-mode disturbances. Experimental results demonstrate a system resolution of 8.8 x 10(-7)RIU (refractive index unit). Real-time monitoring of bovine serum albumin (BSA)/anti-BSA binding interactions at various concentration levels was achieved using a biosensor array. The detection limit was 0.77 microg/ml. The reported two-dimensional SPR biosensor array offers a real-time and non-labeling detection tool for high-throughput protein array analysis. It may find promising applications in protein therapeutics, drug screening and clinical diagnostics.  相似文献   

18.
Wang  Jianshuai  Pei  Li  Wu  Liangying  Wang  Ji  Ruan  Zuliang  Zheng  Jingjing 《Plasmonics (Norwell, Mass.)》2020,15(2):327-333

A surface plasmon resonance (SPR) sensor based on a photonic crystal fiber (PCF) is proposed for low refractive index (RI) detection. The core of PCF is formed by two-layer air walls and either layer is composed of six identical sector rings with negative curvature. Plasmonic material gold (Au) is coated on the external cladding surface. Finite element method (FEM) is applied to investigate the performance of the SPR sensor. Results show that the sensor is independent of polarization due to the coincident coupling properties of the two polarized modes. Additionally, in low RI ranging from 1.20 to 1.33, the sensor keeps a high spectral sensitivity with an average value of 7738 nm/RIU. When RI varies from 1.32 to 1.33, the resolution reaches to its maximum of 8.3 × 10−6. The proposed sensor shows much significance in low RI detection, which is promising in real-time measurement for medical, water pollution, and humidity.

  相似文献   

19.
A surface plasmon resonance (SPR) based immunosensor has been developed for the monitoring of environmentally persistent pollutants like DDT, its metabolites and analogues in real water samples. A reusable immunosurface is provided via the covalent attachment of the analyte derivative to a self-assembled alkanethiol monolayer formed onto the SPR gold-thin layer. The regeneration of the sensor surface allowed the performance of 270 assay cycles within an analysis time of 20 min for each assay cycle. Immunoassays based on a binding inhibition format were performed by using two monoclonal antibodies (MAbs) with different selectivity. Low limits of detection (LODs), in the sub-nanogram per litre range, were attained for DDT-selective (15 ng L-1) and DDT group-selective immunoassays (31 ng L-1). Both assays were carried out in spiked river water samples without significant effect of the matrix. SPR measurements were validated using gas-chromatography-mass spectrometry. The comparison between methods was in good agreement showing an excellent correlation coefficient (r2=0.995). The SPR analysis of DDT proved to be three times more sensitive than colorimetric ELISAs without the need of labelling and a much lower time of response. Our SPR biosensor portable platform (beta-SPR) is already commercialised by the company SENSIA, S.L. (Spain).  相似文献   

20.
Surface plasmons resonance (SPR) architectures based on grating coupler/disperser combination is an attractive alternative for spectral-based biochemical sensing. In this paper, we investigate theoretically and experimentally a new concept where the plasmon coupling occurs through a thin film grating and sensing occurs via the first evanescent diffraction order in transmitive mode. The surface plasmon wave excitation induces a peak in the wavelength as well as in the angular spectra of the detected first transmitted diffraction order. Accordingly, a change in SPR spectrum of the detected diffraction order can be used to quantify the amount of the target molecules immobilized on the sensor surface, and therefore, the concentration of these molecules in the analyte solution. The developed sensor architecture is dedicated to droplet biochemical sensing and appears to be especially suitable for biosensor integration and miniaturization. The presented sensor concept is perfectly suited for mass production of low-cost and reproducible SPR sensor chip for biochemical analysis. The implemented setup gives access to multichannel biosensing with the potential for efficient internal referencing essential to achieve sufficiently high reproducibility and accuracy of the measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号