首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Question: What are tree mortality rates and how and why do they vary in late‐successional Picea abies‐dominated forests? Do observed tree mortality patterns allow comparative assessment of models of long‐term stand development? Location: Northern boreal Fennoscandia. Methods: We measured stand structure in 10 stands in two different areas. We determined age distributions and constructed a chronology of tree deaths by cross‐dating the years of death of randomly sampled dead trees. Results: The stands in the two areas had contrasting tree age distributions, despite similar live tree structure. In one area, stands were relatively even‐aged and originated following a stand‐replacing fire 317 years earlier. The stands in the second area had an uneven age structure and virtually no signs of past fires, suggesting a very long period since the last major disturbance. The younger stands were characterized by a high mortality rate and inter‐annual variation, which we attributed to senescence of the relatively even‐aged stands approaching the maximum age of P. abies. In contrast, the tree mortality rates in the older stands were low and relatively stable. Conclusions: Patterns of tree mortality were, to a large extent, dependent on the time since the last stand‐replacing disturbance, suggesting that northern boreal P. abies stands eventually reach a shifting mosaic state maintained through small‐scale dynamics, but the time needed to reach this state appears to be lengthy; even 300 years after a forest fire stands showed changes in patterns of tree mortality that were related to the developmental stage of the stands.  相似文献   

2.
In contrast to grasslands, forests have only rarely been the subject of functional biodiversity research. This paper addresses specific problems, which arise from applying the synthetic stand approach to long-lived plants, which can be taken to simulate the loss or addition of tree species or tree functional groups in forest stands. Planted synthetic stands often deviate from natural forests in several properties including trophic structure, tree age distribution, and horizontal and vertical canopy structures. Moreover, edge effects and the absence of a quasi-steady state in soil development limit the spectrum of processes which can be analysed for biodiversity effects in synthetic tree stands. We propose that these shortcomings can partly be overcome by combining the synthetic stand approach with observational studies in existing forest stands of contrasting tree diversity. The potentials and limitations of comparisons among existing stands for functional biodiversity research are briefly discussed using the example of the Hainich Tree Diversity Matrix, a species-rich temperate broad-leaved forest consisting of a small-scale mosaic of stands differing in tree diversity, which originated from a variety of historic forest-use practices.  相似文献   

3.
The alteration of natural tree species composition is defined as the deviation of the current tree species composition from that of the natural state. It can be used as a measure of human influence on forest vegetation, and thus as an indicator of the naturalness of forest vegetation. The aim of the study was to develop a standard procedure for estimating the alteration of natural tree species composition, to explain factors driving alteration and to examine its significance for susceptibility of forest stands to natural disturbances. The alteration of natural tree species composition was estimated for the Dinaric region (5556 km2, Slovenia) by the Robič Index of Dissimilarity (RID), ranging from 0 (completely natural) to 100 (completely altered). The index was calculated on the compartment level (24 ha each on average) with data on current and potential natural forest vegetation. The influence of human activities on tree species alteration was examined by using topographic and accessibility variables. The susceptibility of forest stands to natural disturbances was analysed with data on sanitary felling. In the study area, the natural tree species composition of forest stands is moderately preserved; the average value of RID was 50.05, ranging from 1.76 to 100, and the coefficient of variation was 0.49. The alteration of the natural tree species composition of forest stands is primarily the result of forest management and past land use, conditioned either by topography or accessibility of forests. The degree of alteration of tree species composition decreased along the gradients of rockiness, inclination and elevation. A greater degree of alteration appeared on the slopes of intermediate and south facing aspects than on north facing slopes, and in areas that were closer to the forest edge. A higher level of alteration significantly increases the susceptibility of forest stands to natural disturbances. The procedure represents a novel approach in modelling the alteration (naturalness) of tree species composition of forest vegetation. It is applicable at different spatial scales and fosters an understanding of the patterns of tree species composition under the influence of human activity across forest landscapes.  相似文献   

4.
Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.  相似文献   

5.
As a result of a phytopathological investigation into birch (Betula pendula) stands in the Krasnoyarsk group of areas (south of Middle Siberia), newly appearing and existing nidi of bacterial dropsy have been discovered. The influence of growth conditions on morbid affection in birch forests and the correlation between disease prevalence and characteristics of forest inventory have been established. The specificities of tree affection within phytocenoses and the influence of disease on the sanitary state of birch forests have been discussed.  相似文献   

6.
Species composition, diversity and tree population structure were studied in three stands of the tropical wet evergreen forest in and around Namdapha National Park, Arunachal Pradesh, India. Three study stands exposed to different intensities of disturbances were identified, viz., undisturbed (2.4 ha) in the core zone of the park, moderately disturbed (2.1 ha) in the periphery of the park and highly disturbed (2.7 ha) outside the park area. In total 200 plant species belonging to 73 families were recorded in three stands. Tree density and basal area showed a declining trend with the increase in disturbance intensity. The densities of tree saplings and seedlings were lower in the disturbed stands than in the undisturbed stand. Species like Altingia excelsa, Olea dioica, Terminalia chebula, Mesua ferrea and Shorea assamica in the undisturbed stand and Albizia procera alone in the moderately disturbed stand contributed more than 50% of the total tree density in respective stands. The undisturbed stand contained young tree population. In the highly disturbed stand, the tree density was scarce, but had uncut trees of higher girth class (>210 cm GBH). Low shrub density was recorded in both disturbed stands due to frequent human disturbances; the broken canopy and direct sunlight enhanced the abundance of herbs in these stands. With a species rarity (species having <2 individuals) of ca. 50%, the tropical wet evergreenforests of the Namdapha National Park and its adjacent areas warrant more protection from human intervention and also eco-development to meet the livelihood requirements of the local inhabitants in the peripheral areas of the Namdapha National Park in order to reduce the anthropogenic pressure on the natural resources of the park.  相似文献   

7.
Questions: How do climate conditions and the site's ecohy‐ drological properties affect the age and size structure of natural Pinus sylvestris stands on pristine boreal mires? How do the long‐term stand dynamics on mires proceed as stands age? Do the mire stands reach a balanced, old‐growth stage? Location: Boreal mire forests in southern and northern Finland. Methods: Tree age and diameter distributions were analysed in 52 stands in two climate areas and in two mire site types with different ecohydrological properties. Temporal stand dynamics were examined by (1) comparing the graphs of the stands’ mean tree ages by diameter at breast height (1.3 m) classes and (2) describing the changes in stand characteristics and stand age and size structures as a function of stand dominant age in a chronosequence. Results: In the south, the DBH distributions were mostly unimodal and bell‐shaped in both site type groups. Age distributions were multimodal and flat in fully‐stocked sites but more uneven in sparsely forested composite sites. In the north, both the age and size distributions were clearly uneven in both site type groups. Tree age and size variation increased with stand age, but levelled out in the long term. Particularly in the south, the abundance of small trees decreased as stand age increased. Conclusions: The pine stands on pristine boreal mires are more dynamic than anticipated and are generally not characterised by a balanced, self‐perpetuating structure. Their dynamics reflect differences in climate and ecohydrology: on stocked sites in favourable boreal conditions, the stands showed structures typically resultant of inter‐tree competition processes that control tree growth and regeneration, whereas in harsh boreal climates, the tree regeneration process is ongoing diversifying the stand structure.  相似文献   

8.
Plants growing in diverse communities are believed to exhibit associational resistance to herbivores, but this hypothesis has seldom been tested experimentally for vertebrate herbivores in forest ecosystems. We examined browsing patterns of the two principal mammalian herbivores of Finnish boreal forests, moose and voles, in young stands where tree species diversity and composition were experimentally manipulated. The stands were composed either of monocultures or different 2–5 species mixtures of Norway spruce, Scots pine, Siberian larch, silver birch, and black alder. Voles and moose showed contrasting responses to stand diversity and species composition. In accordance with the predictions of the associational resistance hypothesis, vole damage was higher in tree monocultures than in mixed stands, although stand diversity effects were statistically significant only at one of the three study areas. Voles also damaged more trees in coniferous than in deciduous stands. In contrast, moose browsing tended to increase with the number of tree species in a stand and with the presence of the preferred tree species, birch, in a mixture. The observed differences in vole and moose responses to stand diversity and species composition are likely to be due to different feeding specialisation, foraging patterns, and movement ability of these herbivores. Voles switched to trees only when the supply of a more preferred food (grasses and forbs) was depleted and restricted their feeding choice only to the most palatable tree species regardless of the number of tree species present per stand. In contrast, tree branches and foliage represented an important part of moose diet throughout the year; moose may be able to tolerate secondary plant metabolites of different tree species better than voles and may thus benefit from diet broadening when more tree species are available. Furthermore, the home range size and foraging ability of these two very differently sized herbivores may partly explain the observed differences in utilisation of different tree species. Finally, both moose and voles showed high spatial and temporal variation in their feeding; in particular, vole damage was more influenced by tree species diversity in areas and years with high vole densities. Thus, diversification of forest stands may have very different effects on mammalian browsing depending on the herbivores present, their densities, and the tree species used in reforestation.  相似文献   

9.
甘肃小陇山森林植被碳库及其分配特征   总被引:11,自引:0,他引:11  
为准确估计甘肃小陇山林区森林植被的碳库大小,应用干烧法对该地区主要林分类型的13种乔木、14种灌木、10种草本植物的不同器官和7类林分的枯落物有机含碳率进行了测定,同时利用生物量标准地资料对8类林分的乔木层平均含碳率及森林植被的储碳密度和碳储量进行了估算,并分析了林分各组分的碳储量分配特征.结果表明:锐齿栎、油松、栓皮栎、白桦、红桦、日本落叶松、华山松、云杉、秦岭冷杉、水曲柳、大叶椋子木、五角枫、辽东栎13种乔木树种的器官平均含碳率范围为0.4501~0.5049,14种灌木和10种草本的器官平均含碳率分别为0.4446和0.3270,7类林分枯落物平均含碳率为0.4221.该地区8类林分的乔木层平均含碳率范围为0.4676~0.4976;小陇山林区森林植被层平均储碳密度为39.4254 t hm-2,总碳储量为13.3579 Tg.8类林分总碳储量分配中,乔木层占98.07%±0.73%,灌木层占1.38%4±0.43%,草本层占0.17%4±0.08%,枯落物层占0.37%±0.37%.甘肃小陇山8类林分乔木层的平均储碳密度值与我国及世界各地森林平均储碳密度的一些估计值基本接近.  相似文献   

10.
Mapping and characterization of mangrove plant communities in Hong Kong   总被引:5,自引:1,他引:4  
Ecological surveys were carried out to investigate the distribution and characterization of remaining mangrove stands in Hong Kong. The field studies indicate that 43 mangrove stands, excluding Mai Po Nature Reserve, still remained along the coastline of Hong Kong despite tremendous reclamation and development which occurred in the past 40 years. Most mangrove stands were found in Deep Bay (western part)and Sai Kung District (eastern coasts). The total areas occupied by these mangrove stands were 178 ha,varying from a very small stand (with 1–2 mangrove shrubs) to fairly extensive mangroves in Deep Bay (> 10 ha). It appeared that mangrove stands located in Deep Bay area were larger than those in the eastern coasts. Twenty plant species were identified from these stands, with 13 being exclusive or associate mangrove species. The major constituent species were Kandelia candel, Aegiceras corniculatum, Excoecaria agallocha and Avicennia marina. Rare species such as Heritiera littoralis were only found in a few mangrove stands. Out of the 43remaining mangrove stands, 23 were more worthwhile for conservation and their plant community structures were further investigated by transect and quadrat analyses. The importance values (sum of relative abundance,frequency and dominance) show that K. candel was the most dominant species. Species richness and Simpson's indices together with tree height, tree density and canopy area fluctuated significantly between mangrove stands. These values were used to prioritize the conservation potential of the remaining mangrove stands in Hong Kong. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.

Background

Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition.

Methodology/Principal Findings

We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not.

Conclusions/Significance

Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.  相似文献   

12.
北京地区火炬树的萌蘖繁殖扩散   总被引:20,自引:0,他引:20  
首次通过调查火炬树单株和火炬树林分的萌蘖繁殖扩散状况和小样方方法调查火炬树林下的乔木树种天然更新,了解火炬树对北京主要植被类型:油松人工林、侧柏人工林、刺槐人工林和灌木丛的扩散入侵情况。调查发现:在北京荒山爆破造林示范区,火炬树单株8a来4 5°扇形单方向扩散的最远距离为8.35 m,扩散萌蘖的最多株数达98株。立地条件差,特别是土层薄,裸露的岩石多是影响火炬树扩散能力的主要因素,但没有对火炬树萌蘖株的生长产生重要影响。扩散的群体中地径以小径阶个体占主体,说明火炬树萌蘖能力旺盛。在已有高大乔木的立地,如侧柏人工林和油松人工林,火炬树虽然能扩散进入,但只是伴生下木,很难形成优势群体;乔木林内光照明显影响火炬树的扩散数量和扩散规律;并且发现有10种北京当地乔木树种能在火炬树林下天然下种更新并且正常生长。分析表明火炬树没有对北京当地乔木群落构成威胁。火炬树能扩散进入邻近的灌木丛,并且扩散进入灌木丛的火炬树明显比扩散进乔木林内的火炬树长得高。火炬树的生物学和生态学特性决定了它是良好的荒山造林的先锋树种,不可能成为顶极群落的优势树种。所以火炬树目前对北京山区自然、半自然森林生态系统没有产生入侵危害。  相似文献   

13.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

14.
Plantation forests have been expanding in many tropical and subtropical environments. Howerver, even when they replace less wildlife friendly land uses such as pastures and annual crops, the biodiversity levels of pristine natural habitats often have not been recovered. Here we addressed how the landscape context of plantation forests located in South-eastern Brazil affects species richness and community resilience of medium and large size mammals. The area covered by native habitat fragments surrounding plantation forests is positively related to functional richness, including the presence of species more vulnerable to extinction in fragmented landscapes. In addition, the degree of aggregation of plantation forest stands is negatively related to more vulnerable species. No primates were recorded in our seven plantation forest sites (ranging from 272 to 24,921 ha), even when they were seen in native habitat fragments adjacent to commercial tree stands. Two invasive species (Sus scrofa and Lepus capensis) were recorded in four plantation forest sites. The impoverishment of fauna in plantation forests is due to two factors. First, plantation forests generally are structurally simplified habitats when compared to highly diverse tropical forests. Secondly, the isolation from habitat fragments which act as source of individuals in the landscape precludes the establishment of individual in plantation forest. We also highlighted the management practices to improve the complexity of vegetation in commercial tree stands should be taken cautiously, insofar as reduced productivity per area entails a greater demand for land. Thus, an alternative would be intensify the management of the commercial tree stands for wood production together with the restoration of adjacent areas set aside to conservation and native habitat fragments protection.  相似文献   

15.
黄龙山林区油松林封育过程中植物物种多样性特征   总被引:13,自引:1,他引:12  
对黄龙山林区不同封育年限油松林内的高等植物多样性特征进行了初步分析,结果表明:封育45a以前的油松林,群落内部各层物种丰富度随封育年限增加呈递增趋势,45a后群落内部各层物种丰富度随封育年限增加先增后减;不同封育年限的油松林,物种多样性指数表现出灌木层>乔木层>草本层的趋势,各层次的高等植物物种均匀度指数无相同的变化趋势,灌木层与草本层间各项多样性指数,乔木层与灌木层间,乔木层与草本层间的J和E存在显著差异;在乔木层物种多样性特征上,封育30a和封育75a的油松林差异显著;油松林在封育45a后,具有较高的草本植物物种多样性,但林内幼树密度大,形、质差,应进行卫生伐。  相似文献   

16.
Tree mortality of five major species on Hokkaido Island, northern Japan   总被引:2,自引:0,他引:2  
The mortality rates of five major tree species (Abies sachalinensis, Acer mono, Magnolia obovata, Quercus crispula, Tilia japonica) on Hokkaido Island, northern Japan were modeled using logistic regressions based on the long-term observation of 8929 individuals in 65 permanent plots. Individual size, recent growth, one-sided and two-sided interactions with neighbors, climatic and topographic factors were used as independent variables in the logistic regressions, and relevant variables were selected using the stepwise method. For all species analyzed, the final models significantly explained tree mortality rates. The regression analyses indicated that individual size and/or recent growth had effects on tree mortality. A significant effect of one-sided interaction on tree mortality was detected for three species, and a significant effect of two-sided interaction was detected for two species. The interactions with neighbors were not necessarily competitive. For all species analyzed, climatic and topographic factors affected tree mortality. The mortality models obtained can be used for forest dynamics simulations. One ecological question was examined using these models. Species that can grow fast in forest stands with smaller basal areas tended to have high mortality rates in forest stands with larger basal areas. Some ecological characteristics of the analyzed species are described based on the results of the regressions.  相似文献   

17.
Abstract A recent article by Midgley and colleagues suggests that large trees give rise to inordinately high stand basal areas because they pack canopy space more efficiently than smaller trees. We argue that this phenomenon bears more relation to the fact that diameter increment is not necessarily accompanied by significant crown expansion during all stages of a tree's life. Using data from a canopy tree population in an old‐growth temperate forest, we found that crown area scaled as roughly the 3/5 power of trunk basal area. Rather than reflecting fixed scaling laws, we suggest that this pattern arises because of limited opportunities for crown expansion in dense stands. Old canopy trees in dense stands can thus accumulate large basal areas without occupying a commensurately large canopy area.  相似文献   

18.
Questions: 1. Are there differences among species in their preference for coniferous vs. deciduous forest? 2. Are tree and shrub species better colonizers of recent forest stands than herbaceous species? 3. Do colonization patterns of plant species groups depend on tree species composition? Location: Three deciduous and one coniferous recent forest areas in Brandenburg, NE Germany. Methods: In 34 and 21 transects in coniferous and deciduous stands, respectively, we studied the occurrence and percentage cover of vascular plants in a total of 150 plots in ancient stands, 315 in recent stands and 55 at the ecotone. Habitat preference, diaspore weight, generative dispersal potential and clonal extension were used to explain mechanisms of local migration. Regression analysis was conducted to test whether migration distance was related to species’ life‐history traits. Results: 25 species were significantly associated with ancient stands and ten species were significantly more frequent in recent stands. Tree and shrub species were good colonizers of recent coniferous and deciduous stands. In the coniferous stands, all herbaceous species showed a strong dispersal limitation during colonization, whereas in the deciduous stands generalist species may have survived in the grasslands which were present prior to afforestation. Conclusions: The fast colonization of recent stands by trees and shrubs can be explained by their effective dispersal via wind and animals. This, and the comparably efficient migration of herbaceous forest specialists into recent coniferous stands, implies that the conversion of coniferous into deciduous stands adjacent to ancient deciduous forests is promising even without planting of trees.  相似文献   

19.
Soils of pine forests in the Bytnica Forestry District, Poland, are poor in nutrients readily accessible to plants. The excessively acidic reaction of the soils, typical for soils under pine forests, unfavourably affects the growth of microorganisms whose numbers are lower than in soils under deciduous and mixed forests. In the pine forests of the studied forestry there were outbreaks of a defoliating insect - pine beauty moth (Panolis flammea L.), which resulted in over 60% defoliation of the trees. The studies were carried out on the area of tree stands subjected to gradation by leaf-eating insects (sprayed and not sprayed) and healthy stand of the same age class (age 60 to 70 years). The studies revealed increased number of soil microorganisms in samples taken from the area affected by pine beauty moth gradation in the case of both unsprayed areas and those sprayed with the pesticide. The occurrence in these soils of larger numbers of ammonifying and denitrifying bacteria points to the presence of conditions favouring the growth of heterotrophic organisms. Changes in the number of actinomycetes and fungi in soils under tree stands subjected to gradation by insects, compared to healthy stands, can be a consequence of a change of environmental conditions (e.g. % content of organic carbon). Soils under defoliated tree stands show higher biochemical activity related to nitrogen cycling in the pine forest ecosystem. This leads to higher availability of organic nitrogen for conversion to inorganic forms of nitrogen, which are utilised by trees. Further changes occurring in soils under forest stands affected by gradation by leaf-eating insects would allow to gain knowledge on the ecological consequences of the use of insecticides in the protection of pine stands against harmful insects, with particular stress on those situations in which pine stands not threatened by complete defoliation are sprayed.  相似文献   

20.
Melaleuca quinquenervia dominates large areas of the Florida Everglades in the southeastern USA where it has transformed sedge-dominated marshes into melaleuca forests. Despite its prevalence, very little is known about the ecology and stand dynamics of this invasive tree. We delineated large-, intermediate-, and small-tree stands in non-flooded, seasonally flooded and permanently flooded areas of Florida in 1997, measured their biological attributes, and then quantified litterfall components for 3–4 year periods. Melaleuca wood components and mature seed-capsules comprised the largest and the smallest portions of aboveground biomass, respectively, while leaves, fine stems, mature fruits, bud scales, floral structures, and residues represented decreasingly smaller fractions of the litter during the succeeding year. Dry weight proportion of leaves in litter was greatest (80.9%) in non-flooded and least (69.1%) in permanently flooded habitats. It was also greatest in small (85.6%) and least in large (64.7%) tree stands. Reproductive structures and mature-fruit fractions in litter were highest in large-tree stands whereas the bud-scale fraction showed no relationship to tree size. Seasonally flooded habitats had the most litterfall, wherein small-, intermediate-, and large-tree stands generated 0.662, 0.882, and 1.128 kg m−2 yr−1, respectively. Dry weight of stems, leaves, bud–scales, floral structures, and mature fruit fractions in litter increased as the predominant size of the trees in the stand increased. Total annual litter production was highest during 1999–2000. Leaf fall occurred year-round with maximal amount during April, July, and October. Highest amounts of bud scales and floral structures fell during October–January, which corresponded with flushes of vegetative growth and major flowering events. Overall, melaleuca alone accounted for nearly 99% of the total litterfall dry weight in all habitats and months sampled. The amount of non-melaleuca litter was greater in small-tree stands than in intermediate- or large-tree stands. Litterfall data of this nature will be helpful in detecting changes occurring in melaleuca canopies in response to biological control impact and in prescribing site-specific management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号