首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total number, biomass, production, and respiration of bacterioplankton were measured in oligotrophic, mesotrophic and eutrophic waters of the Eastern Pacific. Total number of bacteria in the upper mixed layer and in the upper thermocline boundary layers varied from 30–60.103 ml-1 in oligotrophic waters to 100–400.103 ml-1 in mesotrophic waters of fronts and divergences, and to 1–2,5.106 ml-1 in eutrophic waters of coastal upwellings. Wet biomass varied from 5–10 mg l-1 in oligotrophic waters, to 50–200 mg l-1 in mesotrophic waters, and to 1–2 g m-3 in eutrophic waters. Below the layer of maximum temperature gradient i.e. below 35–50 m, bacterioplankton density decreased 5–10 times. P/B coefficients per day were highest in the oligotrophic surface water ( 1), and lowest in the eutrophic ones (0.2–0.4). In mesotrophic waters they were intermediate (0.4–1.0). the stock of labile organic matter (LOM) accessible to microbial action varied from 0.3 to 1.6 mg Cl-1. Its highest value occurred in the upwelling area. The stock of LOM does not noticeably decrease from the euphotic zone to a depth of 2 000 m. Its turnover time varied from 5 to 45 days in surface waters, and 30–50 years in deep oceanic waters. The role of bacterioplankton in productivity and in cycling of organic matter in surface — and deep oceanic waters is discussed.  相似文献   

2.
Phytoplankton biomass and primary production rates within semi-enclosed reef lagoons of the central Great Barrier Reef were compared with adjacent shelf waters. Chlorophyll concentrations and surface primary production rates were usually higher in lagoons although seasonal differences were only significant during the summer. Nitrate concentrations were higher in lagoons than in shelf waters year-round. Nano- (<20 m size fraction) or pico-phytoplankton (<2 m size fraction) dominated phytoplankton biomass and production within reef lagoons throughout the year. Net phytoplankton (>10–20 m size fraction), however, were relatively more important in both reef lagoons and open shelf waters during the summer. Biomass-specific production within lagoons (range 41–90 mg C mg chl–1 day–1) was high, regardless of season. Lagoonal phytoplankton production (range 0.2–1.6 g C m–2 day–1) was directly correlated with standing crop and inversely related to lagoon flushing rates. Phytoplankton blooms develop within GBR reef lagoons during intermittent calm periods when water residence times exceed phytoplankton generation times.  相似文献   

3.
Carbon standing stocks and fluxes were studied in the lagoon of Tikehau atoll (Tuamotu archipelago, French Polynesia), from 1983 to 1988.The average POC concentration (0.7–2000 µm) was 203 mg C m–3. The suspended living carbon (31.6 mg C m–3) was made up of bacteria (53%), phytoplankton < 5 µm (14.2%), phytoplankton > 5 µm (14.2%), nanozooplankton 5–35 µm (5.7%), microzooplankton 35–200 µm (4.7%) and mesozooplankton 200–2000 µm (7.9%). The microphytobenthos biomass was 480 mg C m–2.Suspended detritus (84.4% of the total POC) did not originate from the reef flat but from lagoonal primary productions. Their sedimentation exceeded phytobenthos production.It was estimated that 50% of bacterial biomass was adsorbed on particles. the bacterial biomass dominance was explained by the utilisation of 1) DOC excreted by phytoplankton (44–175 mg C m–2 day –1) and zooplankton (50 mg Cm–2 day–1)2) organic compounds produced by solar-induced photochemical reactions 3) coral mucus.50% of the phytoplankton biomass belongs to the < 5 µm fraction. This production (440 mg C m–2 day–1) exceeded phytobenthos production (250 mg C m–2 day–1) when the whole lagoon was considered.The zooplankton > 35 µm ingested 315 mg C m–2 day–1, made up of phytoplankton, nanozooplankton and detritus. Its production was 132 mg C m–2 day–1.  相似文献   

4.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

5.
Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l−1 DOC and 5.5 × 108 cells l−1 offshore and 68 μmol l−1 DOC and 3.1 × 108 cells l−1 over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.  相似文献   

6.
Production in the Sea of Okhotsk   总被引:3,自引:0,他引:3  
Primary production, microbial production and the density of planktonic microheterotrophs were estimated at 40 stations in the Okhotsk Sea in July-August 1992 during the seasonal phytoplankton minimum. The primary production by phytoplankton remained rather high even during this minimum. At most stations it was >0.6-0.8 g m-2 day-1, and in leftover patches of spring diatom 'bloom' it reached >5 g C m-2 day-1. The deep maxima of phytoplankton at the upper boundary of the seasonal thermocline were an ordinary phenomenon. The depth of the euphotic zone was normally 30-50 m in the open sea and 12-25 m at the shelf station. Any correlations between the phosphate contents in the upper mixed layer and primary production were absent at the stations. There was no adaptation of the phytoplankton to the light deficiency in deep maxima layers. The total numbers of bacterioplankton were 1-1.5 x 106 ml-1 and its biomass was close to 100 mg m-3 in the open sea. All these numbers were 2-3 times greater at the shelf stations. In deep waters, the bacterioplankton biomass decreased to 10-40 mg m-3. The microbial production in the upper layer was high, at 50-100 mg m-3, decreasing 50-100 times in the deep waters. The numbers of ciliates in the upper water layer varied from 3 to 6 x 103 l-1 and were 1.5-2 times greater than in the shelf areas. Ciliate biomass was 60-100 mg m-3 in the upper mixed layer, and per square metre varied to 1.5-2.5 g. The dominant ciliate taxa belonged to the naked oligotrichid genera Strombidium and Tontonia. Tentative calculations were made of the basin's annual primary production and for the analysis of energy balance in the ecosystem.   相似文献   

7.
Baur  Bruno  Ringeis  Birgit 《Hydrobiologia》2002,469(1-3):1-10
Net pen fish farms generally enrich the surrounding waters and the underlying sediments with nutrients and organic matter, and these loadings can cause a variety of environmental problems, such as algal blooms and sediment anoxia. In this study we test the potential of biofiltration by artificial reefs for reducing the negative environmental impacts surrounding fish farms in the Gulf of Aqaba, Red Sea. Two triangular-shaped artificial reefs (reef volume 8.2 m3) constructed from porous durable polyethylene were deployed at 20 m; one below a commercial fish farm and the other 500 m west of this farm in order to monitor the colonization of these reefs by the local fauna and to determine whether the reef community can remove fish farm effluents from the water. Both reefs became rapidly colonized by a wide variety of organisms with potential for the removal of compounds released from the farms. Within the first year of this study fish abundances and the number of species reached 518–1185 individuals per reef and 25–42 species per reef. Moreover, numerous benthic algae; small sessile invertebrates (bryozoa, tunicates, bivalves, polychaetes, sponges, anemones) and large motile macrofauna (crustaceans, sea urchins, gastropods) settled on the reef surfaces. Depletion of chlorophyll a was measured in the water traversing the artificial reefs in order to assess the biofiltration capacity of the associated fauna. Chlorophyll a was significantly reduced to a level 15–35% lower than ambient concentrations. This reduction was greatest at intermediate current speeds (3–10 cm s–1), but was not influenced by current direction. The reef structures served as a successful base for colonization by natural fauna and flora, thereby boosting the local benthic biodiversity, and also served as effective biofilters of phytoplankton.  相似文献   

8.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

9.
Current data were collected at 3 stations in the Great Barrier Reef Lagoon of Australia between Lizard Island and Carter Reef, an outer ribbon reef, (approximately 14°S) over a 2 year period. During the southeast Trade wind season (March–September), net circulation at all stations was to the northwest, parallel to the coast and reefs, with little cross-shelf movement. This motion was periodic at about 20 days and highly coherent with the wind. During the non-Trade wind season (October–February) the net circulation depended on the variable wind regime and exhibited frequent current reversals and cross-shelf motion. Tidal currents were superimposed on the net circulation and were mainly cross-shelf but with a tidal excursion of only about 5 km on a flood tide. Tidal currents close to Carter Reef were not cross-shelf but remained parallel to the reef, suggesting that the major tidal flux is through the reef passages. Net circulation close to Carter Reef was not coherent with net circulation at the stations in more open waters, during both Trade and non-Trade seasons. Current speeds were typically 10–30 cm s-1. Passive plankters entering the water from Carter Reef are therefore likely to remain close to the outer ribbon reefs and be moved parallel to them. Based on the above, we predict that in the Trade wind season, passive plankters would be advected further from their point of origin than during the non-Trade wind season, but there would be more cross-shelf advection during the latter.  相似文献   

10.
Abundance, morphological composition, vertical distribution, production and activity of total bacterioplankton and its specific groups in the Black Sea were investigated in August–September 1989. The total bacterioplankton was highest in the upper mixed layer (0.7–1 × 106 cells ml–1), corresponding to that in mesotrophic basins. In the N-E shallow part of the sea it attained 3 × 106. Below the thermocline (50–100 m) the total number of bacteria decreased to 0.2–0.4 × 106 ml–1. In the redox gradient zone (zone of O2-H2S interface), it increased again. In deep anoxic waters the bacterioplankton, numbering 0.15–0.2 × 106 ml–1, was functionally inactive. Its biomass was 12–40 mg C m–3 in the upper mixed layer, 5–10 mg C m–3 in the intermediate cold layer (40–100 m depth), and 10–20 mg C–3 in the redox zone. Maximum production rates occurred in the upper mixed layer (8–20 mg C–3 d–1) and in the redox-zone, 80–90% of it was due to chemosynthesis of thiobacilli. Below 200 m, microbial production decreased to about zero in the anoxic zone. Maximum activity of heterotrophic bacteria was recorded in the upper mixed layer, while thiobacilli and methaneoxidezing bacteria were most active in the redox-zone. Here, the maximum rates of H2S and of thiosulfate oxidation, as well as maximum sulfate reduction were recorded. Chemical oxidation of H2S was dominant. These results are discussed with respect to the present ecological situation of the Black Sea.  相似文献   

11.
Chikin  S. M.  Tarasova  N. A.  Saralov  A. I.  Bannikova  O. M. 《Microbiology》2003,72(2):213-220
The total population density and the biomass of bacterioplankton, mesozooplankton, and phosphate-accumulating bacteria (PAB) were estimated during the 2000–2001 summer–autumn seasons in the coastal waters of the White and Barents Seas, which are subject to the action of tidal and sea currents, the inflow of riverine waters, and anthropogenic impact. In the shallow estuarine waters with salinities of 6.5–32 near the Chernaya, Pesha, and Pechora River mouths, the population of PAB fluctuated from 0.1 to 9.1 million cells/ml (0–36% of the total bacterial population). In pelagic seawaters, which are low in phosphates (12–50 g/l) and are characterized by an increased iron/phosphorus ratio (2.0–3.6), bacterioplankton amounted to 0.1–1.6 million cells/ml and was mainly represented by small organisms with a volume of 0.08–0.15 m3, commonly lacking intracellular polyphosphates. In the pelagic zone of the Barents Sea, the biomass of mesozooplankton (B z) was comparable with that of bacterioplankton (B b = 39–175 mg/m3), the B b/B z ratio being 1.4–4.6. Off the Varandeiskii, Pechora, and Kolguyev oil terminals, B b increased to 155–300 mg/m3 and the B b/B z ratio rose to 1.4 to 50.3 (with an average value of 20.9), presumably due to the severe anthropogenic impact on these waters. In this case, the dense population of bacterioplankton (0.9–7.6 million cells/ml) was mainly represented by large cells (0.12–0.76 m3 in volume), most of which (3–43% of the total bacterioplankton population) contained polyphosphates. The chemical composition of these waters was characterized by an elevated content of the total phosphorus (65–128 g/l) and by a low iron/phosphorus ratio (0.9–1.2).  相似文献   

12.
Almeida  M.A.  Cunha  M.A.  Alcântara  F. 《Hydrobiologia》2002,(1):251-262
We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 g C l–1) and production (0.1–16.0 g C l–1 h–1, 1.5–36.8 mg C m–2 h–1) as well as in phytoplankton abundance (50–1700 g C l–1) and primary production (0.1–512.9 g C l–1 h–1, 1.5–512.9 mg C m–2 h–1). Bacterial specific growth rate (0.10–1.68 d–1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d–1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively – generating seasonal ratios of 1–13 in bacterial specific growth rate – to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.  相似文献   

13.
A 3 year study (1986–1989) was carried out in the Bay of Bengal off Madras in order to understand the influence of physical and chemical variables on the occurrence, abundance and productivity of its phytoplankton. Biochemical oxygen demand and nutrient concentrations were highest near the mouth of river Cooum. Pigments and net primary production in nearshore waters varied between 4.1 and 1113 C mg m–3 h–1, while in offshore waters the maximum was only 201 mg C m–3 h–1. Multiple regression analysis with net photosynthesis as the dependent variable and other variates as the independent variables revealed that nutrients did not account for much variation in net photosynthesis in nearshore stations but contributed significantly to variation in offshore station. Analyses of seawater collected during two cruises in coastal waters at 18–22° N latitude revealed that nitrogen was low in comparison to phosphorus and could be limiting primary production in the surface waters of the Bay.  相似文献   

14.
Concentrations of phytoplankton (coccoid cychobacteria and total chlorophyll) and planktonic microrial communities (heterotropic bacteria, nanoflagellates and ciliates) were lower over leeward reef flats than over open water or reef faces, around Davies Reef and Myrmidon Reef in the central Great Barrier Reef, Australia. Concentrations of cyanobacteria, which accounted for approximately 15–50% of the carbon biomass of phytoplankton in open water, decreased from the reef face towards the leeward reef flat. Concentrations of ciliates were consistently lower at the leeward reef flat than at the reef face. For Davies Reef, the retention rates of phytoplankton and planktonic microbial communities were estimated to reach 253 gC d-1 per 1 m strip of the reef or about 0.09 gC m-2 d-1. This value is virtually equal to estimates of net community production (0.1 gC m-2 d-1). This allocthonous organic subsidy may help maintain spositive carbon balance on both Davies and Myrmidon Reefs on the Great Barrier Reef.  相似文献   

15.
The distribution and abundance of phytoplankton within a sampling grid of 50×103 km2 around Elephant Island were determined from early January to mid-March of 4 successive years, 1990–1993. The number of stations where physical-optical-biological data were obtained from the surface to a maximum of 750 m ranged from 74 in 1990 to 206 in 1993. Contour maps of chlorophyll-a (chl-a) concentrations showed marked mesoscale patchiness that varied from month to month and also interannually. The distribution patterns for chl-a were similar when plotting surface concentrations or integrated values to 100 m. Three major zones could be distinguished that differed in both physical and biological characteristics. Stations in the northwest portion of the grid (Drake Passage waters) and in the southeast portion of the grid (Bransfield Strait waters) showed the most pronounced interannual variations, with phytoplankton biomass and rates of primary production being considerably higher in 1990–91 than in 1992–93. The central portion of the sampling grid, which included the major frontal system north of Elephant Island, showed the smallest interannual variations in both biological and physical parameters and the highest rates of primary production. Phytoplankton biomass and rates of primary production were correlated with depth of the upper mixed layer (UML), which in turn was correlated with the measured wind stress. The mean depth of the UML was 50 m, while the mean depth of the euphotic zone was 90 m. Using the measured mean surface solar irradiance (550 Einsteins m–2 s–1), the mean irradiance experienced by cells in the UML of 50 m would be around 105 E m–2 s–1, which is similar to the measured Ik (light saturation) value for photosynthesis (101 Em–2 s–1). The mean value from all cruises for chl-a in surface waters was 0.7 mg m–3, while the mean rate of primary production was 374 mg Cm–2 day–1.  相似文献   

16.
D. lumholtzi in Lake Samsonvale, Queensland, Australia, is a small species (max. size approx. 7 µgC) that occurs in low abundance (max. abundance 6400 m–3), with an average daily biomass of 3.32 mgC m–3. Its annual rates of carbon assimilation, production and respiration, are 166, 110, and 56 mgC m–3 y–1 respectively. Annual biomass turnover (annual production/average daily biomass) is 33 and production efficiency is 50–66%. The population may consume 1.65–2.20 mgC m–3 daily, equivalent to about 1% of the average daily standing crop of phytoplankton. Clutch size is small, 2 eggs, but represents 30–80% of a female's weight. A female may only produce 8–10 offspring in a full lifespan, nevertheless egg production may account for 56% of total production. The population shows autumn and spring peaks in abundance, and is believed to oversummer (4 months) as ephippia.  相似文献   

17.
The effects of river diversion on phytoplankton primary production and biomass in the downstream part of two rivers were studied in relation to physical and chemical variables. These rivers, situated north of the 52nd parallel, are characteristic of oligotrophic systems with phytoplankton primary production less than 10.76 mg C m–2 h–1, chlorophyll -a lower than 3.0 mg m–3 and biomass between 118–1007 mg m–3. The decrease in flow favored the establishment of an algal biomass approximately two times greater then that present before diversion. This increase in biomass was associated in one river with an increase of 2.5 times of the mean primary production. In the other river the primary production per unit of surface area remained stable but increased when expressed by unit volume, due to a great decrease in underwater light penetration, consequence of inorganic particular matter increase.
Facteurs contrôlant la production primaire dens deux rivières soumises a une forte réduction de débit
  相似文献   

18.
Microbial food web in a large shallow lake (Lake Balaton, Hungary)   总被引:2,自引:2,他引:0  
Seasonal variations of phyto-, bacterio- and colourless flagellate plankton were followed across a year in the large shallow Lake Balaton (Hungary). Yearly average chlorophyll-a concentration was 11 µg 1–1, while the corresponding values of bacterioplankton and heterotrophic nanoflagellate (HNF) plankton biomass (fresh weight) were 0.24 mg 1–1 and 0.35 mg 1–1, respectively. About half of planktonic primary production was channelled through bacterioplankton on the yearly basis. However, there was no significant correlation between phytoplankton biomass and bacterial abundance. Bacterial specific growth rates were in the range of 0.009 and 0.09 h–1, and ended to follow the seasonal changes in water temperature. In some periods of the year, predator-prey relationships between the HNF and bacterial abundance were obvious. The estimated HNF grazing on bacteria varied between 3% and 227% of the daily bacterial production. On an annual basis, 87% of bacterial cell production was grazed by HNF plankton.  相似文献   

19.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

20.
On the annual variation of phytoplankton biomass in Finnish inland waters   总被引:2,自引:1,他引:1  
Annual variations in phytoplankton biomass in 63 lakes in Southern and Central Finland are discussed. Biomass is rather small during winter (January–April), usually <0.05 mg l–1 (fresh weight) and there are no differences between oligotrophic and eutrophic lakes. In early spring and in autumn biomass varies widely, depending mainly on water temperature. Phytoplankton biomass is smaller in July than in June and August in oligotrophic lakes (biomass <0.20 mg l–1 fresh weight) and mesotrophic (biomass 1.0–2.5 mg l–1) lakes, but greater in eutrophic (biomass 2.5–10.0 mg l–1) and hypereutrophic (biomass >10.0 mg l–1) lakes. The standard deviation of phytoplankton biomass in Finnish inland waters is usually smallest in July, which facilitates the comparison of phytoplankton between different kinds of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号