首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Neuropeptides containing the C-terminal sequence Arg-Phe-NH2 are an important group of hormones mediating or modulating neuronal communication. Arg-Phe-NH2 peptides are abundant in evolutionary "old" nervous systems such as those of coelenterates, the lowest animal group having a nervous system. Here, we have cloned the precursor protein for the anthozoan neuropep-tide Antho-RFamide (2) from the sea pansy Renilla köllikeri. This precursor contains 36 copies of immature Antho-RFamide (Gln-Gly-Arg-Phe-Gly) and two additional putative neuropeptide sequences, which are regularly distributed over the precursor protein. Of the 36 Antho-RFamide sequences, 29 copies are separated by the five amino acid spacer sequence Arg-Glu/Gly-Asn/Ser/Asp-Glu/Lys-Glu. This implicates processing at single Arg and single Glu residues. Endoproteolytic cleavage at the C-terminal side of paired or single basic residues is a well known initial step in the maturation of precursor proteins. Cleavage at the C-terminal side of acidic residues, however, is unusual and must be catalyzed by a new type of processing enzyme. This processing enzyme is most likely to be an endoprotease, because the simplest way to generate Antho-RFamide is by endoproteolytic cleavage at the C-terminal side of Glu residues. The enzyme could also be an aminopeptidase, but in this case other proteases must be involved. As a possible alternative, one single "unspecific" aminopeptidase could cleave at Glu, Asp, Gly, Asn, Ser, and possibly also at other residues, and thus liberate all Antho-RFamide sequences. The processing of one precursor molecule probably yields 38 neuropeptides. Thus, the Antho-RFamide precursor from Renilla is one of the most productive precursor proteins known so far.  相似文献   

2.
Hydra magnipapillata has three distinct genes coding for preprohormones A, B, and C, each yielding a characteristic set of Hydra-RFamide (Arg-Phe-NH2) neuropeptides, and a fourth gene coding for a preprohormone that yields various Hydra-LWamide (Leu-Trp-NH2) neuropeptides. Using a whole-mount double-labeling in situ hybridization technique, we found that each of the four genes is specifically expressed in a different subset of neurons in the ectoderm of adult Hydra. The preprohormone A gene is expressed in neurons of the tentacles, hypostome (a region between tentacles and mouth opening), upper gastric region, and peduncle (an area just above the foot). The preprohormone B gene is exclusively expressed in neurons of the hypostome, whereas the preprohormone C gene is exclusively expressed in neurons of the tentacles. The Hydra-LWamide preprohormone gene is expressed in neurons located in all parts of Hydra with maxima in tentacles, hypostome, and basal disk (foot). Studies on animals regenerating a head showed that the prepro-Hydra-LWamide gene is expressed first, followed by the preprohormone A and subsequently the preprohormone C and the preprohormone B genes. This sequence of events could be explained by a model based on positional values in a morphogen gradient. Our head-regeneration experiments also give support for transient phases of head formation: first tentacle-specific preprohormone C neurons (frequently associated with a small tentacle bud) appear at the center of the regenerating tip, which they are then replaced by hypostome-specific preprohormone B neurons. Thus, the regenerating tip first attains a tentacle-like appearance and only later this tip develops into a hypostome. In a developing bud of Hydra, tentacle-specific preprohormone C neurons and hypostome-specific preprohormone B neurons appear about simultaneously in their correct positions, but during a later phase of head development, additional tentacle-specific preprohormone C neurons appear as a ring at the center of the hypostome and then disappear again. Nerve-free Hydra consisting of only epithelial cells do not express the preprohormone A, B, or C or the LWamide preprohormone genes. These animals, however, have a normal phenotype, showing that the preprohormone A, B, and C and the LWamide genes are not essential for the basic pattern formation of Hydra.  相似文献   

3.
Using a radioimmunoassay for the carboxyl-terminal sequence Arg-Val-NH2, two novel peptides were purified from extracts of the sea anemone Anthopleura elegantissima. These peptides were L-3-phenyllactyl-Tyr-Arg-Ile-NH2 (name: Antho-RIamide I) and its des-phenyllactyl fragment Tyr-Arg-Ile-NH2 (Antho-RIamide II). Immunocytochemical staining showed that these peptides were localized in neurons of sea anemones. Application of low concentrations (10−8 M) of Antho-RIamide I inhibited spontaneous contractions in several muscle groups of sea anemones, whereas Antho-RIamide II was inactive. Antho-RIamide I is the second neuropeptide from sea anemones that bears the unusual, amino-terminal L-3-phenyllactyl blocking group. We suggest that this group renders the peptide resistant against degradation by nonspecific aminopeptidases. In addition, the L-3-phenyllactyl residue might also play a role in receptor binding.  相似文献   

4.
The freshwater polyp Hydra magnipapillata has a primitive nervous system that produces at least three distinct classes of neuropeptides: various peptides having the C-terminal sequence Arg-Phe-NH2 (the Hydra-RFamide family), Leu-Trp-NH2 (the Hydra-LWamide family), and a single peptide having the C-terminal sequence Lys-Val-NH2 (Hydra-KVamide). The various Hydra-RFamides are synthesized by three different preprohormones: preprohormone-A, -B, and -C. The various Hydra-LWamides are synthesized by a single preprohormone (prepro-Hydra-LWamide), as is Hydra-KVamide (prepro-Hydra-KVamide). Using a wholemount double-labeling two-color in situ hybridization technique and RNA probes specific for each of these five Hydra preprohormone mRNAs, we found that specific sets of neurons express each of the five preprohormones, except for the peduncle region of Hydra (an area just above the basal disk), where a population of neurons exists that expresses both preprohormones-A and preproHydra-KVamide mRNAs. The functional significance of this coexpression is unclear. This is the first report on the coexpression of two well-characterized preprohormones (yielding two well-characterized neurohormone families) in cnidarians. This report also shows that there are at least six neurochemically different populations of neurons in Hydra.  相似文献   

5.
Seedlings of loblolly pine, Pinus taeda , were grown in open-topped chambers under four levels of CO2: two ambient and two elevated. Larvae of the red-headed pine sawfly, Neodiprion lecontei , were reared from early instar to pupation, primarily on branches within chambers. Larval growth and mortality were assessed and leaf phytochemistry samples of immature and mature leaves collected weekly. Mature leaves grown under elevated CO2 had significant reductions in leaf nitrogen and increases in non-structural carbohydrate contents, resulting in foliage being a poorer food source for larvae, i.e. higher carbohydrate:nitrogen ratio. Nutritional constituents of immature needles were unaffected by seedling CO2 treatment. Volatile mono- and sesquiterpenes were unrelated to plant CO2 treatments for either leaf age class. Larval consumption of immature needles significantly increased on seedlings grown under CO2 enrichment, while mature needle consumption was not different between the treatments. The average weight gain per larva significantly declined in late instar larvae consuming elevated CO2-grown needles. In spite of this reduced growth, neither the days to pupation nor pupal weights were different among the CO2 treatments. This study suggests that enriched CO2-induced alterations in pine needle phytochemistry can affect red-headed pine sawfly performance. However, compensatory measures by larvae, such as choosing to consume more nutritious immature needles, apparently helps offset enriched CO2-induced reductions in the leaf quality of mature needles.  相似文献   

6.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

7.
HnRNA fractions with sedimentation coefficients > 45 S isolated from pigeon bone marrow as well as from the immature and mature erythroid cells of periferal blood were hybridised with a large excess of DNA fractionated on the basis of renaturation kinetics. 58–62% of the input RNAs were recovered as RNAase-resistant hybrids. About 1/3 (20%) of bone marrow > 45 S RNA found in the hybrids was hybridised with the repetitive and about 2/3 (40%) with the unique DNA sequences. In addition, a considerably smaller portion of > 45 S RNA from the "reticulocytes" (13%) and "eryth-rocytes" (∼ 6%) was hybridised with the repetitive DNA.  相似文献   

8.
9.
The freshwater polyp Hydra has a primitive nervous system that expresses at least six different neuropeptide genes: (1) three genes, coding for the preprohormones-A, -B, and -C that each gives rise to a variety of peptides with the C-terminal sequence Arg-Phe-NH(2) (the Hydra-RFamides); (2) one gene, coding for a preprohormone that gives rise to five peptides with the C-terminal sequence Leu-Trp-NH(2) (the Hydra-LWamides); (3) one gene, coding for a preprohormone that produces a peptide with the C-terminal sequence Lys-Val-NH(2) (Hydra-KVamide, also called Hym-176); and (4) one gene, coding for a preprohormone that gives rise to a peptide with the C-terminal sequence Arg-Gly NH(2) (Hydra-RGamide, also called Hym-355). In a previous paper, we described that a population of neurons in the peduncle (a region just above the foot) of Hydra coexpresses the preprohormone-A and KVamide genes, whereas neurons in the other regions only express either the preprohormone-A, -B, -C, LWamide, or the KVamide genes. Here, we investigated the RGamide gene expression, using whole-mount, two-color double-labeling in situ hybridization, and found that neurons in the basal disk (foot), gastric region, hypostome (a region around the mouth), and tentacles coexpress this gene together with the LWamide gene. A small population of neurons in the hypostome and upper gastric region expresses only the LWamide gene. No coexpression of the RGamide gene with any of the other neuropeptide genes was observed. This is the second example of coexpression of two neuropeptide genes in cnidarians. It demonstrates that many neurons in the primitive nervous systems of cnidarians use combinations ("cocktails") of neuropeptides for their signaling. It also shows that Hydra has at least seven neurochemically different populations of neurons.  相似文献   

10.
The nucleotide sequence of the G6-amylase gene from alkalophilic Bacillus sp. H-167 was determined. The open reading frame of the gene consisted of 2865 base pairs, encoding 955 amino acids. The NH2-terminal amino acid sequence analysis of the G6-amylase indicated that the enzyme had a single peptide of 33 amino acid residues and the mature enzyme was composed of 922 amino acids, giving a molecular mass of 102598. Identity of the NH2-terminal amino acid sequences among each component of the multiform G6-amylase suggested the proteolytic processing of the COOH-terminal side of the enzyme. The DNA sequence and the deduced amino acid sequence of the G6-amylase gene showed no homology with those of other bacterial α-amylases although the consensus amino acid sequences of the active center were well conserved.  相似文献   

11.
Abstract: GABAA receptors were characterized in cellular fractions isolated from adult bovine brain. The fraction enriched in cortical astrocytes is very rich in high-affinity binding sites for [3H]flunitrazepam and other "central-type" benzodiazepine ligands. The amount of specific [3H]flunitrazepam binding was more than five times higher in the glial fraction than in synaptosomal and perikaryal fractions. [3H]Flunitrazepam was displaced by low concentrations of clonazepam and other specific ligands for central GABAA receptors. Specific binding sites for GABA, flunitrazepam, barbiturates, and picrotoxin-like convulsants were characterized. Allosteric interactions between the different sites were typical of central-type GABAA receptors. The presence of α-subunit(s), as revealed by [3H]flunitrazepam photoaffinity labeling, was demonstrated in all brain fractions at molecular mass 51–53 kDa. Photoaffinity labeling was highest in the glial fraction. However, in primary cultured astrocytes from neonate rat cortex, no photoaffinity labeling was detected. Information obtained from astrocytes in culture should thus be taken with caution when extrapolated to differentiated astroglial cells. Our results actually show that, in mature brain, most of the fully pharmacologically active GABAA receptors are extrasynaptic and expressed in astroglia.  相似文献   

12.
The primary sequences of the chloroplast triose phosphate/phosphate translocator precursor proteins from C4-plants (maize mesophyll cells and Flaveria trinervia ) and from the C3-type Flaveria pringlei were determined. The mature parts of these translocators possess 83–94% identical amino acid residues. The C4-translocator protein can be correctly targeted to C3-type chloroplasts and inserted into the envelope membrane. Expression of the mature parts of these chloroplast translocators (cTPT) in transformed yeast cells and subsequent reconstitution of the functional proteins reveals the difference between the recombinant translocator proteins from the two cell types with respect to the transport of phosphoenolpyruvate. Comparison of the cTPT sequences from F. pringlei and F. trinervia in combination with computer-aided molecular modelling of the substrate translocation pore leads to the suggestion, that only minor exchanges of amino acid residues between the C3- and C4-translocator proteins are sufficient to extend their substrate specificities to recognize also phosphoenolpyruvate.  相似文献   

13.
Abstract  The venomous phospholipase A2 (AcPLA2) coding reading region of the Chinese honeybee ( Apis cerana cerana ), which is composed of 405 bp encoding a mature glycosylated peptide with 134 amino residues was transformed into the expression vector pETblue-1. Then the recombinant vector was introduced into Escherichia coli Tuner (DE3) plac I for expression. Analysis result of SDS-PAGE showed that the expression products had a protein band of about 15kD. Detection of western blot using ant-European honeybee ( Apis mellifera ) phospholipase A2 (AmPLA2) polyclonal serum as the first antibody showed that the expression products appeared a special blot same as the native AmPLA2.The result demonstrated that the AcPLA2 peptide had been expressed in E. coli and the AcPLA2 has the similar antigenicity as the AmPLA2.  相似文献   

14.
Parameters related to leaf photosynthesis were evaluated in three genotypes of common bean ( Phaseolus vulgaris L.) with contrasting tolerance to Mn toxicity. Two short-term studies in solution culture were used to assess the effect of excess Mn on CO2 assimilation in mature and immature leaves. Mn toxicity decreased total chlorophyll content only in immature leaves, with a consequent reduction of leaf CO2 assimilation. Mature leaves that showed brown speckles characteristic of Mn toxicity, did not suffer any detriment in their capacity to assimilate CO2, at least in a 4-day experiment. Stomatal conductance and transpiration were not affected by the presence of high levels of Mn in leaf tissue. Lower stomatal conductance and transpiration rates were observed only in leaves with advanced chlorosis. Differences among genotypes were detected as increased chlorosis in the more sensitive genotype ZPV-292, followed by A-283 and less chlorosis in the tolerant genotype CALIMA. Since CO2 assimilation expressed per unit of chlorophyll was not different between high-Mn plants and control plants, we conclude that the negative effect of Mn toxicity on CO2 assimilation can be explained by a reduction in leaf chlorophyll content.  相似文献   

15.
Electrophysiological studies demonstrated that the olfactory epithelium of mature male brown trout Salmo trutta parr was acutely sensitive to F-series prostaglandins (PGFs) PGF and PGF, with detection threshold concentrations of 10−11 M. The olfactory epithelium was also sensitive to the PGF metabolite 15-ketoPGF (threshold 10−8 m), but did not detect a further metabolite, 13,14,-dihydro-15-ketoPGF Immature brown trout did not detect any of the prostaglandins tested. Exposure of mature male brown trout parr to waterborne PGF and PGF (concentration 10−8 m), resulted in significant increases in levels of expressible milt and the plasma concentrations of 17,20β-dihydroxy-4-pregnen-3-one, testosterone and 11-ketotestosterone. The olfactory epithelium of both immature and mature male brown trout parr was sensitive to the urine and ovarian fluid from ovulated female brown trout. Exposure of mature male brown trout parr to ovarian fluid resulted in an increase in the levels of plasma 17,20β-dihydroxy-4-pregnen-3-one whilst exposure to urine increased the levels of expressible milt. In addition, PGF was found to be present within both the urine and ovarian fluid of mature female brown trout. It is suggested that the F-series prostaglandins have a role as priming pheromones in male brown trout.  相似文献   

16.
Abstract: The coexpression of sulphonylurea binding sites and ATP-sensitive K+ (KATP) channels was examined in the rat motor cortex, an area of the CNS exhibiting a high density of sulphonylurea binding. These channels were not detected on neuronal cell bodies, but sulphonylurea-sensitive KATP channels and charybdotoxin-sensitive, large-conductance calcium-activated K+ BKCa channels were detected by patch clamping of fused nerve terminals from the motor cortex. Subcellular fractionation revealed that high-affinity sulphonylurea binding sites were enriched in the nerve terminal fraction, whereas glibenclamide increased calcium-independent glutamate efflux from isolated nerve terminals. It is concluded that neuronal sulphonylurea receptors and KATP channels are functionally linked in the motor cortex and that they are both selectively expressed in nerve terminals, where the KATP channel may serve to limit glutamate release under conditions of metabolic stress.  相似文献   

17.
Abstract: In a previous study, protein kinase FA/glycogen synthase kinase-3 ( FA/GSK-3 ) was identified as a myelin basic protein (MBP) kinase associated with intact brain myelin. In this report, the phosphorylation sites of MBP by kinase FA/GSk-3 were further determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, tryptic peptide mapping, Edman degradation, and direct sequencing. Kinase FA/GSK-3 phosphorylates MBP on both threonine and serine residues. Three tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Sequential manual Edman degradation together with direct sequence analysis revealed that T(p)PPPSQGK is the phosphorylation site sequence for the first major phosphopeptide peak. When mapping with the bovine brain MBP sequence, we finally demonstrate Thr97-Pro, one of the in vivo phosphorylation sites in MBP, as the major site phosphorylated by kinase FA/GSK-3, implicating a physiologically relevant role of FA/GSK-3 in the regulation of brain myelin function. By using the same approach, we also identified NIVT94(p)PR as the phosphorylation site sequence in the second major tryptic phosphopeptide derived from [32P]MBP phosphorylated by kinase FA/GSK-3, further indicating that kinase FA/GSK-3 represents a Thr-Pro motif-directed MBP kinase involved in the phosphorylation of brain myelin.  相似文献   

18.
19.
The population structure and seasonal changes in condition factors of the burbot in a shallow coastal region of the north-eastern Bothnian Bay are described. The significance of the so-called rest years is examined by comparing condition indices in immature or sterile and mature burbot. The somatic condition index ( K 2), liver index ( K 1), intestine index ( K 1) and gonad index ( Kg ) are determined monthly in terms of organ weight in relation to body length. Approximately 30% of the whole catch of 1052 burbot were non-maturing but were 40 cm or more in length. K 2, K 1 and K 1 were lowest in the autumn, when the first sign of gonad recrudescence was observed in mature burbot. The non-maturing burbot were never in poorer condition than mature ones. As mature and non-maturing burbot dissipated their energy stores during the warmest period of the summer, it is concluded that burbot spending a rest year do not accumulate and store energy reserves over the summer for the next year, and that such rest years, if they exist, do not occur for nutritional reasons.  相似文献   

20.
Gibberellin biosynthesis pathways were investigated using isotopically-labelled C19- and C20-gibberellins and cell-free preparations from immature seed of Phaseous coccineus cv. Prizewinner. The initial steps in an early 13-hydroxylation pathway involved the conversion gibberellin A12-aldehyde (GA12-aldehyde) to GA12 which was 13-hydroxylated to yield GA53, Metabolism of GA53 yielded GA44. In contrast to other cell-free systems, GA44 was not further converted, either as a δ-lactone or an open-lactone structure, to the C-20 aldehyde GA19. GA19 was, however, metabolised to GA20, GA5 and GA1. GA20 represented a branch point in the pathway as it was converted both to GA1, which was an end product, and GA5 which was further converted to GA6. Like GA1, GA6 was also an end-product of the early 13-hydroxylation pathway.
A non-13-hydroxylation pathway involving GA4, GA15, GA24 GA37 and GA36 also originated from GA12. The terminal product of this pathway was the 3β-hydroxy C19-gibberellin, GA4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号