首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Pluripotent human stem cells are a powerful tool for the generation of differentiated cells that can be used for the study of human disease. We recently demonstrated that neurons derived from pluripotent human embryonic stem cells (hESC) can be infected by the highly host-restricted human alphaherpesvirus varicella-zoster virus (VZV), permitting the interaction of VZV with neurons to be readily evaluated in culture. In the present study, we examine whether pluripotent hESC and neural progenitors at intermediate stages of differentiation are permissive for VZV infection. We demonstrate here that VZV infection is blocked in naïve hESC. A block to VZV replication is also seen when a bacterial artificial chromosome (BAC) containing the VZV genome is transfected into hESC. In contrast, related alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PrV) productively infect naïve hESC in a cell-free manner, and PrV replicates from a BAC transfected into hESC. Neurons differentiate from hESC via neural progenitor intermediates, as is the case in the embryo. The first in vitro stage at which permissiveness of hESC-derived neural precursors to VZV replication is observed is upon formation of “neurospheres,” immediately after detachment from the inductive stromal feeder layer. These findings suggest that hESC may be useful in deciphering the yet enigmatic mechanisms of specificity of VZV infection and replication.  相似文献   

4.
5.
In order to facilitate the generation of mutant viruses of varicella-zoster virus (VZV), the agent causing varicella (chicken pox) and herpes zoster (shingles), we generated a full-length infectious bacterial artificial chromosome (BAC) clone of the P-Oka strain. First, mini-F sequences were inserted into a preexisting VZV cosmid, and the SuperCos replicon was removed. Subsequently, mini-F-containing recombinant virus was generated from overlapping cosmid clones, and full-length VZV DNA recovered from the recombinant virus was established in Escherichia coli as an infectious BAC. An inverted duplication of VZV genomic sequences within the mini-F replicon resulted in markerless excision of vector sequences upon virus reconstitution in eukaryotic cells. Using the novel tool, the role in VZV replication of the major tegument protein encoded by ORF9 was investigated. A markerless point mutation introduced in the start codon by two-step en passant Red mutagenesis abrogated ORF9 expression and resulted in a dramatic growth defect that was not observed in a revertant virus. The essential nature of ORF9 for VZV replication was ultimately confirmed by restoration of the growth of the ORF9-deficient mutant virus using trans-complementation via baculovirus-mediated gene transfer.  相似文献   

6.
Varicella-zoster virus (VZV) is a human alphaherpesvirus that infects sensory ganglia and reactivates from latency to cause herpes zoster. VZV replication was examined in human dorsal root ganglion (DRG) xenografts in mice with severe combined immunodeficiency using multiscale correlative immunofluorescence and electron microscopy. These experiments showed the presence of VZV genomic DNA, viral proteins, and virion production in both neurons and satellite cells within DRG. Furthermore, the multiscale analysis of VZV-host cell interactions revealed virus-induced cell-cell fusion and polykaryon formation between neurons and satellite cells during VZV replication in DRG in vivo. Satellite cell infection and polykaryon formation in neuron-satellite cell complexes provide mechanisms to amplify VZV entry into neuronal cell bodies, which is necessary for VZV transfer to skin in the affected dermatome during herpes zoster. These mechanisms of VZV neuropathogenesis help to account for the often severe neurologic consequences of herpes zoster.  相似文献   

7.
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.  相似文献   

8.
9.
Although envelope glycoprotein M (gM) is highly conserved among herpesviruses, the varicella-zoster virus (VZV) gM homolog has never been investigated. Here we characterized the VZV gM homolog and analyzed its function in VZV-infected cells. The VZV gM homolog was expressed on virions as a glycoprotein modified with a complex N-linked oligosaccharide and localized mainly to the Golgi apparatus and the trans-Golgi network in infected cells. To analyze its function, a gM deletion mutant was generated using the bacterial artificial chromosome system in Escherichia coli, and the virus was reconstituted in MRC-5 cells. VZV is highly cell associated, and infection proceeds mostly by cell-to-cell spread. Compared with wild-type VZV, the gM deletion mutant showed a 90% reduction in plaque size and 50% of the cell-to-cell spread in MRC-5 cells. The analysis of infected cells by electron microscopy revealed numerous aberrant vacuoles containing electron-dense materials in cells infected with the deletion mutant virus but not in those infected with wild-type virus. However, enveloped immature particles termed L particles were found at the same level on the surfaces of cells infected with either type of virus, indicating that envelopment without a capsid might not be impaired. These results showed that VZV gM is important for efficient cell-to-cell virus spread in cell culture, although it is not essential for virus growth.  相似文献   

10.
11.
12.
To determine the type of cell(s) that contain latent varicella-zoster virus (VZV) DNA, we prepared pure populations of neurons and satellite cells from trigeminal ganglia of 18 humans who had previously had a VZV infection. VZV DNA was present in 34 of 2,226 neurons (1.5%) and in none of 20,700 satellite cells. There was an average of 4.7 (range of 2 to 9) copies of VZV DNA per latently infected neuron. Latent VZV DNA was primarily present in large neurons, whereas the size distribution of herpes simplex virus DNA was markedly different.  相似文献   

13.
Virus-encoded modulation of apoptosis may serve as a mechanism to enhance cell survival and virus persistence. The impact of productive varicella-zoster virus (VZV) infection on apoptosis appears to be cell type specific, as infected human sensory neurons are resistant to apoptosis, yet human fibroblasts readily become apoptotic. We sought to identify the viral gene product(s) responsible for this antiapoptotic phenotype in primary human sensory neurons. Treatment with phosphonoacetic acid to inhibit viral DNA replication and late-phase gene expression did not alter the antiapoptotic phenotype, implicating immediate-early (IE) or early genes or a virion component. Compared to the parental VZV strain (rOKA), a recombinant virus unable to express one copy of the diploid IE gene ORF63 (rOkaΔORF63) demonstrated a significant induction of apoptosis in infected neurons, as determined by three methods: annexin V staining, deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining, and transmission electron microscopy. Furthermore, neurons transfected with a plasmid expressing ORF63 resisted apoptosis induced by nerve growth factor withdrawal. These results show that ORF63 can suppress apoptosis of neurons and provide the first identification of a VZV gene encoding an antiapoptotic function. As ORF63 is expressed in neurons during both productive and latent infection, it may play a significant role in viral pathogenesis by promoting neuron survival during primary and reactivated infections.  相似文献   

14.
15.
Varicella-zoster virus (VZV) reactivation causes herpes zoster, which is accompanied by an influx of lymphocytes into affected ganglia, but the stimulus for this infiltrate is not known. We report that VZV infection of ganglia leads to increased CXCL10 production in vitro, in an explant ganglion model and in naturally infected dorsal root ganglia (DRG) during herpes zoster. Lymphocytes expressing the receptor for CXCL10, CXCR3, were also observed throughout naturally infected ganglia during herpes zoster, including immediately adjacent to neurons. This study identifies VZV-induced CXCL10 as a potential driver of T lymphocyte recruitment into DRG during herpes zoster.  相似文献   

16.
M Kress  H Fickenscher 《FASEB journal》2001,15(6):1037-1043
Varicella-zoster virus (VZV) is a widespread human herpes virus causing chicken pox on primary infection and persisting in sensory neurons. Reactivation causes shingles, which are characterized by severe pain and often lead to postherpetic neuralgia. To elucidate the mechanisms of VZV-associated hyperalgesia, we elaborated an in vitro model for the VZV infection of sensory neurons from rat dorsal root ganglia. Between 35 and 50% of the neurons showed strong expression of the immediate-early virus antigens IE62 and IE63 and the late glycoprotein gE. When the intracellular calcium concentration was monitored microfluorometrically for individual cells after infection, the sensitivity to GABA or capsaicin was similar in controls and in VZV-infected neurons. However, the baseline calcium concentration was increased. Neurons became de novo sensitive to adrenergic stimulation after VZV infection. Norepinephrine-responsive neurons were more frequent and calcium responses to norepinephrine were significantly higher after infection with wild-type isolates than with the attenuated vaccine strain OKA. The adrenergic agonists phenylephrine and isoproterenol had similar efficacy. We suggest that the infection with wild-type VZV isolates confers norepinephrine sensitivity to sensory neurons by using alpha(1)- and/or beta(1)-adrenergic receptors providing a model for the pathophysiology of the severe pain associated with the acute reactivation of VZV.  相似文献   

17.
Japanese encephalitis virus (JEV) is a pathogen that causes severe vector-borne zoonotic diseases, thereby posing a serious threat to human health. Although JEV is potentially neurotropic, its pathogenesis and distribution in the host have not been fully elucidated. In this study, an infected mouse model was established using a highly virulent P3 strain of JEV. Immunohistochemistry and in situ hybridization, combined with anatomical imaging of the mouse brain, were used to dynamically localize the virus and construct three-dimensional (3D) images. Consequently, onset of mild clinical signs occurred in some mice at 3.5 d post JEV infection, while most mice displayed typical neurological signs at 6 d post-infection (dpi). Moreover, brain pathology revealed typical changes associated with non-suppurative encephalitis, which lasted up to 8 d. The earliest detection of viral antigen was achieved at 3 dpi in the thalamus and medulla oblongata. At 6 dpi, the positive viral antigen signals were mainly distributed in the cerebral cortex, olfactory area, basal ganglia, thalamus, and brainstem regions in mice. At 8 dpi, the antigen signals gradually decreased, and the localization of JEV tended to concentrate in the cerebrum and thalamus, while no viral antigen was detected in the brain at 21 dpi. In this model, the viral antigen was first expressed in the reticular thalamic nucleus (Rt), and the virus content is relatively stable. The expression of the viral antigen in the hippocampal CA2 region, the anterior olfactory nucleus, and the deep mesencephalic nucleus was high and persistent. The 3D images showed that viral signals were mostly concentrated in the parietal cortex, occipital lobe, and hippocampus, near the mid-sagittal plane. In the early stages of infection in mice, a large number of viral antigens were detected in denatured and necrotic neurons, suggesting that JEV directly causes neuronal damage. From the time of its entry, JEV is widely distributed in the central nervous system thereby causing extensive damage.  相似文献   

18.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.    相似文献   

19.
Study of the human neurotrophic herpesvirus varicella-zoster virus (VZV) and of its ability to infect neurons has been severely limited by strict viral human tropism and limited availability of human neurons for experimentation. Human embryonic stem cells (hESC) can be differentiated to all the cell types of the body including neurons and are therefore a potentially unlimited source of human neurons to study their interactions with human neurotropic viruses. We report here reproducible infection of hESC-derived neurons by cell-associated green fluorescent protein (GFP)-expressing VZV. hESC-derived neurons expressed GFP within 2 days after incubation with mitotically inhibited MeWo cells infected with recombinant VZV expressing GFP as GFP fusions to VZV proteins or under an independent promoter. VZV infection was confirmed by immunostaining for immediate-early and viral capsid proteins. Infection of hESC-derived neurons was productive, resulting in release into the medium of infectious virions that appeared fully assembled when observed by electron microscopy. We also demonstrated, for the first time, VZV infection of axons and retrograde transport from axons to neuronal cell bodies using compartmented microfluidic chambers. The use of hESC-derived human neurons in conjunction with fluorescently tagged VZV shows great promise for the study of VZV neuronal infection and axonal transport and has potential for the establishment of a model for VZV latency in human neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号