首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. H. Field    F. C. Rind 《Journal of Zoology》1992,228(3):371-394
Using a femoral-abdominal stridulatory mechanism, wetas produce the following stridulatory behaviours: aggression, mating, calling, defence and disturbance. Syllable period, rather than number of syllables/echeme or syllable duration, was the most stereotyped temporal parameter for aggression, mating and calling stridulation. Coefficients of variation of the above parameters were large and overlapped considerably for aggression and mating stridulation. We concluded that, for these two behaviours, a basic sound pattern is used to convey different messages to female and male receiver wetas, respectively, but the syllable period of the pattern decreases with increased excitation of males in aggressive encounters. In adult male combat, winners stridulated last in a bout, and produced significantly more aggression sounds than losers.  相似文献   

2.
Crickets produce stridulated sounds by rubbing their forewings together. The calling song of the cricket species Eneoptera guyanensis Chopard, 1931 alternates two song sections, at low and high dominant frequencies, corresponding to two distinct sections of the stridulatory file. In the present study we address the complex acoustic behavior of E. guyanensis by integrating information on the peculiar morphology of the stridulatory file, the acoustic analysis of its calling song and the forewing movements during sound production. The results show that even if E. guyanensis matches the normal cricket functioning for syllable production, the stridulation involves two different closing movements, corresponding to two types of syllables, allowing the plectrum to hit alternately each differentiated section of the file. Transition syllables combine high and low frequencies and are emitted by a complete forewing closure over the whole file. The double-teeth section of the stridulatory file may be used as a multiplier for the song frequency because of the morphological multiplication due to the double teeth, but also because of an increase of wing velocity when this file section is used. According to available phylogenetic and acoustic data, this complex stridulation may have evolved in a two-step process.  相似文献   

3.
Many gomphocerine grasshoppers communicate acoustically: a male's calling song is answered by a female which is approached phonotactically by the male. Signals and recognition mechanisms were investigated in Chorthippus biguttulus with regard to the cues which allow sex discrimination. (1) The stridulatory files on the hindfemur of both sexes are homologous in that they are derived from the same row of bristles, but convergent with respect to the “pegs”. In males the pegs are derived from the bristles, and in females from the wall of the bristle's cup. (2) Male and female songs are generated by similar, probably homologous motor programs, but differ in the duration, intensity, “gappyness” of syllables, risetime of pulses, and the frequency spectra. The hindleg co-ordination during stridulation and the resulting temporal song patterns are less variable in males than in females. (3) For both sexes, recognition of a mate's signal depends on species-specific syllable structure. For males it is essential that the female syllables consist of distinct short pulses, whereas females reject “gappy” syllables. Males strongly prefer “ramped” pulses, females respond to syllables irrespective of steeply or slowly rising ramps. Males react only to the low-frequency component, whereas females prefer spectra containing both, low and high frequency components. Accepted: 20 November 1996  相似文献   

4.
Males of the closely related African tettigoniids Acanthoplus discoidales and Acanthoplus longipes produce a long-lasting calling song and a short disturbance sound. The temporal patterns of the sounds were analysed in respect to species differences and song type differences. The calling songs of both species consist of impulses which are separated into verses of two syllables, with fewer impulses in the first syllable. A. longipes produces more impulses in each syllable than A. discoidales and has longer verse durations, verse intervals and syllable intervals. Also, the disturbance sounds, produced after mechanical stimulation, contain distinct verses of impulses. The disturbance sound of A. longipes has a higher number of impulses per verse than that of A. discoidales. The frequency spectra of the songs in both species have similar peak frequencies (around 12.5 kHz) and both species have their greatest hearing sensitivity in the range between 5 and 10 kHz. Females of A. longipes perform phonotaxis only to songs with a species-specific temporal pattern. By contrast, females of A. discoidales react positively to calling songs of both species.  相似文献   

5.
Stridulation by females of Steropleurus stali and Platystolus obvius in response to the calling song of the males was observed and recorded. The response has only been stimulated by the appropriate male song, either directly or from a recording. The structure of the files and the form of stridulation in both sexes is described. The male song of S. stali is remarkable in that only a few teeth on the file are struck in each wing movement. It is also notable that both opening and closing wing strokes contribute more or less equally to the syllable. The female song is similar but distinct. The song of P. obvius male is a single chirp involving nearly all the teeth on the file and with the main emphasis on the closing syllable. The response song of the female is a very brief chirp. These species are only sporadic singers, but when the female responds they are stimulated into greater activity. They thus contrast with reiterative singers like Ephippiger in which there is no female response. The implications of these contrasting behavioural patterns is discussed.  相似文献   

6.
Males of Mygalopsis markiBailey (Tettigoniidae: Orthoptera) alter the temporal structure of their song in response to other competing males. The song of males calling in aggregations has a high variance in the number of syllables per chirp, with short intervals between each chirp. In contrast, the temporal pattern of the song of isolated males is more evenly spaced, with an increase in length of the interchirp intervals and low variance in the number of syllables per chirp. In order to simulate a calling male moving closer to a male in an aggregation, a playback technique was adopted whereby the recorded calling song of a male was presented to itself via a loudspeaker in increments of 2dB. The change in song pattern of the resident male involved a reduction in the number of syllables per chirp and an increase in the interchirp interval, with the number of chirps per second remaining constant. This reduction in the output of the song, instead of not calling as a result of an acoustic contest, may still allow males to continue calling for females.  相似文献   

7.
Male courtship songs have two functions in species recognition and intraspecific mate choice. Female preference might thus exert different types of selection pressure on male song traits. We used a combination of acoustic mate choice experiments and statistical analyses to examine how traits of the calling songs of male nightingale grasshoppers,Chorthippus biguttulus , are influenced by different sexual selection pressures. We recorded calling songs of males and tested their attractiveness to females in acoustic mate choice experiments. The attractiveness values were a good estimate of the potential male mating success. In experiments with a pair of males, females copulated significantly more often with the male that had the higher attractiveness value. To detect directional, stabilizing, disruptive or correlative selection acting on male song properties we used linear and nonlinear regressions between male song traits and female response behaviour. Three signal traits were revealed to be under directional selection: song loudness, pause to syllable ratio and the mean duration of gaps within syllables. A nonlinear regression testing for correlative selection showed that a fourth song trait, rhythm, in combination with mean gap duration was also important for female mate choice. With these traits and trait combinations we were able to explain 42% of the variance in attractiveness between males. Since we found no evidence for stabilizing selection, but ample evidence for directional selection, we conclude that selection on the traits examined is related to mate choice mainly in the context of intraspecific sexual selection and probably less so in species recognition. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

8.
9.
The cicada Okanagana rimosa (Say) has an acoustic communication system with three types of loud timbal sounds: (i) A calling song lasting several seconds to about 1 min which consists of a sequence of chirps at a repetition rate of 83 chirps per second. Each chirp of about 6 ms duration contains 4-5 pulses. The sound level of the calling song is 87-90 dB SPL at a distance of 15 cm. (ii) An amplitude modulated courtship song with increasing amplitude and repetition rate of chirps and pulses. (iii) A protest squawk with irregular chirp and pulse structure. The spectra of all three types are similar and show main energy peaks at 8-10 kHz. Only males sing, and calling song production is influenced by the songs of other males, resulting in an almost continuous sound in dense populations. In such populations, the calling songs overlap and the temporal structure of individual songs is obscured within the habitat. The calling song of the broadly sympatric, closely related species O. canadensis (Provander) is similar in frequency content, but distinct in the temporal pattern (24 chirps per second, 24 ms chirp duration, eight pulses per chirp) which is likely important for species separation in sympatric populations. The hearing threshold of the auditory nerve is similar for females and males of O. rimosa and most sensitive at 4-5 kHz. Experiments in the field show that female phonotaxis of O. rimosa depends on parameters of the calling song. Most females are attracted to calling song models with a 9 kHz carrier frequency (peak frequency of the calling song), but not to models with a 5 kHz carrier frequency (minimum hearing threshold). Phonotaxis depends on temporal parameters of the conspecific song, especially chirp repetition rate. Calling song production is influenced by environmental factors, and likelihood to sing increases with temperature and brightness of the sky. Correspondingly, females perform phonotaxis most often during sunny conditions with temperatures above 22 degrees C. Non-mated and mated females are attracted by the acoustic signals, and the percentage of mated females performing phonotaxis increases during the season.  相似文献   

10.
丹顶鹤性活动的声行为研究   总被引:3,自引:0,他引:3  
丹顶鹤繁殖期的性活动可分为雄鹤求偶、雌鹤对雄性求偶的应答、两性交配和交配完结4个阶段,其相应的鸣声模式分别为雄性的求偶鸣声、雌性对雄性求偶的应答声和两性的对鸣声、两性对唱的交配声和两性的高声合唱。4个阶段鸣声都是以基本音的主频率(PF)为主音的单音调声,前3个阶段都带数个近似fn=nf0(f0=FP)关系的低幅值谐频成分。第4个阶段带数个近似fn=nf0(f0=FP)关系的高幅值谐频成分;品质因数(Q3dB)多半为4~6,声脉冲重复频率(RFP)一般为150~180Hz,而第2阶段声的RFP一般为180~260Hz。雄性鸣声的每个单次叫声中含有的音节数较少,一般不超过4个;而雌性鸣声比较复杂。每个单次叫声中含有的音节数较多,一般都在7~8个以上;但雌雄鸣声的每个音节都是由3个声脉冲组成。雄鹤鸣唱声频率变化范围较小,而雌鹤鸣唱声频率变化形式是由低到高达到高峰后又开始下降。4个阶段的鸣声都具有较好共鸣。只有第2阶段发声运动较快。而且发现雄鹤鸣唱单次鸣叫声的音节数“增多”。各阶段鸣声特性均存在差异,不同配偶间均存在显著差异,研究结果表明丹顶鹤雌雄都具有不同的鸣声,且其性活动过程中不同的鸣声行为具有较高的个体识别信号潜能。另外,求偶鸣叫声和求偶应答与对鸣声在性活动鸣声中起着决定性的作用。  相似文献   

11.
Male Caribbean fruit flies, Anastrepha suspensa (Loew) produce two sounds in sexual contexts, calling songs and precopulatory songs. Calling song occurs during pheromone release from territories within leks and consists of repeated bursts of sound (pulse trains). Virgin female A. suspensa became more active in the presence of recorded calling songs. Activity during the broadcast of a heterospecific song did not differ from movement during periods of silence. A conspecific song typical of smaller males, i.e. conspicuous for its long periods between pulse trains, also failed to elicit more activity by virgin females than silence. Mated females were most active during silences. Unmated males had no obvious reaction to sound. Calling songs are apparently sexually important communications which females discriminate among and may use as cues for locating and/or choosing between mates. Precopulatory song is produced by mounted males just before and during the early stages of copulation. Males that did not produce such songs remained coupled for shorter periods, perhaps passing fewer sperm. Wingless (muted) males were more likely to complete aedeagal insertion if a recorded precopulatory song was broadcast. Calling song played at the same level (90 dB) had no significant effect on the acceptance of males, nor did precopulatory song at a lower SPL (52dB). Precopulatory song may be used to display male vigour to choosing females.  相似文献   

12.
In bushcricket communication systems males have to signal acoustically to attract females. The calling activity, however, not only may increase mating success, but also may result in costs in terms of energy and predation risks. In this study the calling activity of males and its timing during the day were analyzed for several species of the genus Poecilimon,representing two different communication systems. In species with mute females that approach the males phonotactically, calling was restricted to darkness and syllable rates were high. In species where females respond acoustically to male song and thus can induce the male to approach them phonotactically, males called during both day and night or during the day only, and syllable rates were low. After mating, male acoustic activity dropped to a very low level but was restored during the following 2 to 3 days, a time period longer than the minimal male mating interval. The results are discussed with regard to possible energetic limitations, the risk of attracting predators and parasitoids, and the spermatophore production of males.  相似文献   

13.
14.
Although female mating preferences are a focus of current controversy,little detailed information exists on female preferences withinnatural populations. In the field cricket Gryllus integer, malecalls attract sexually receptive females, and females preferentiallymove toward male calls with longer calling bouts (periods ofcalling containing no pause greater than 0.10 s in real time).This study investigated female preferences for other variablesof the male song, including syllable period, chirp pause, andnumber of syllables per chirp. Male song was measured in thefield to determine mean values for each variable in nature.Female preferences were determined using a locomotor-compensatordevice, on which females ran in response to sequential playbacksof synthesized male song. Mean female preferences correspondedroughly to mean male song variables. Nonetheless, females variedgreatly in their responses to synthesized calls differing insyllable period, syllable number, and chirp pause. Moreover,individual females who were more selective for any one variablealso tended to be more selective for others. These results showthat females may differ from one another in their mating preferencesand degrees of selectivity, even within a single population.  相似文献   

15.
The winter wren is a common forest bird living in groups of few adjacent neighbours during the breeding season. Inside each group, males vocally interact in the context of both territorial holding and sexual competition, forming a complex communication network. To study this network, we first analysed song type and syllable repertoires within and between distinct groups. We found a limited number of song types highly stereotyped in length, syntax and syllable composition, frequently shared among neighbours. Between groups, song type and syllable repertoires sharing decreased with increasing distance at a higher rate for song types than for syllables. Then, with continuous recordings, we focused on the dynamics of acoustic interactions between neighbours. We showed that male winter wrens can differentially use their song type repertoire (non-matching strategy), overlap their neighbours and modulate their singing rhythm producing longer inter-song intervals with no change in song length during acoustic interactions.  相似文献   

16.
ERWIN NEMETH 《Ibis》1996,138(2):172-176
Ewin described two singing styles, "rapid" and "slow", in the Reed Bunting Emberiza schoeniclus. My research has demonstrated that the prevalence of song styles is related to male mating status. Songs of mated and unmated males differed in the interval structure, number of syllables per song, number of frequency modulations per syllable and number of introductory syllables. Since both singing styles are uttered at the same intensity, it is not likely that they are parts of a continuous range and it is justified to treat them as two different song categories. After losing their mate, males sang like unpaired males and therefore a learning effect can be excluded. Both singing styles were directed to females, the slow one probably only to the mate. The use of these singing styles as a means of territory or mate defence cannot be excluded, but, if so used, it would seem to be of minor significance.  相似文献   

17.
Seasonal, testosterone-dependent changes in sexual behaviors are common in male vertebrates. In songbirds such seasonal changes occur in a learned behavior--singing. Domesticated male canaries (Serinus canaria) appear to lose song units (syllables) after the breeding season and learn new ones until the next breeding season. Here we demonstrate in a longitudinal field study of individual, free-living nondomesticated (wild) canaries (S. canaria) a different mode of seasonal behavioral plasticity, seasonal activation, and inactivation of auditory-motor memories. The song repertoire composition of wild canaries changes seasonally: about 25% of the syllables are sung seasonally; the remainder occur year-round, despite seasonal changes in the temporal patterns of song. In the breeding season, males sing an increased number of fast frequency-modulated syllables, which are sexually attractive for females, in correlation with seasonally increased testosterone levels. About 50% of the syllables that were lost after one breeding season reappear in the following breeding season. Furthermore, some identical syllable sequences are reactivated on an annual basis. The seasonal plasticity in vocal behavior occurred despite the gross anatomical and ultrastructural stability of the forebrain song control areas HVc and RA that are involved in syllable motor control.  相似文献   

18.
Acute and chronic electromyographic (EMG) recordings from individual syringeal muscles were used to study syringeal participation in respiration and vocalization. In anesthetized birds, all syringeal muscles recorded were active to some degree during the expiratory phase of respiration, following activity in the abdominal musculature and preceding the emergence of breath from the nostril. In awake birds, the ventralis (V) muscle fired a strong, consistent burst, but the dorsalis (D) was variable both in strength and timing. Denervation of V is sufficient to produce the wheezing respiration originally seen in birds with complete bilateral section of the tracheosyringeal nerve. Complete syringeal denervation also removed almost all the acoustic features that distinguish individual song syllables, but had a minor effect on the temporal structure of song. When activity in V and D was recorded in awake, vocalizing birds, D was active before and during sound production, and V showed a small burst before sound onset and a vigorous burst timed to the termination of sound. During song, V was consistently active at sound offset, but also participated during sound for narrow bandwidth syllables. For some syllables (simple harmonic stacks), neither muscle was active. These data suggest that V contributes to syllable termination during vocalization and may silence the syrinx during normal respiration. D contributes to the acoustic structure of most syllables, and V may contribute to a special subset of syllables. In summary, the syringeal muscles show different activity patterns during respiration and vocalization and can be independently activated during vocalization, depending on the syllable produced.  相似文献   

19.
Abstract.  Male cicadas produce a loud calling song that attracts females at long range. In some cases, ambient temperature has been shown to have an effect on the temporal structure of this acoustic signal. Here, a positive correlation is reported for the first time between the ambient temperature and the sound power of the calling song. This relationship is illustrated in three species of the Palaearctic genus Tibicina : Tibicina corsica fairmairei Boulard, Tibicina garricola Boulard and Tibicina tomentosa Olivier. It is suggested that the males thermoregulate behaviourally. The minimal ambient temperature range that the Tibicina species need to call is 22–24 °C. The effect of ambient temperature on calling song power is assumed to be the result of thermal effects in the response of the acoustic system (i.e. muscle activity of the acoustic system being temperature-dependent). Inter-individual and interspecific differences in calling song power are interpreted in the general context of the Tibicina sound behaviour.  相似文献   

20.
Engaging in mating behaviors usually increases exposure to predators for both males and females. Anti‐predator strategies during reproduction may have important fitness consequences for prey. Previous studies have shown that individuals of several species adjust their reproductive behavior according to their assessment of predation risk, but few studies have explored potential sexual differences in these strategies. In this study, we investigate whether the acoustic cues associated with predatory attacks or those associated with predators themselves affect the mating behavior of female and male túngara frogs, Physalaemus pustulosus. We compared the responses of females approaching a mate and those of calling males when exposed to mating calls associated with sounds representing increased hazard. When presented with mating calls that differed only in whether or not they were followed by a predation‐related sound, females preferentially approached the call without predation‐related sounds. In contrast to females, calling males showed greater vocal response to calls associated with increased risk than to a call by itself. We found significant differences in the responses of females and males to several sounds associated with increased hazard. Females behaved more cautiously than males, suggesting that the sexes balance the risk of predation and the cost of cautious mating strategies differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号