首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We previously reported that sonic hedgehog (Shh) induces the differentiation of rat ventral forebrain neurons expressing a novel marker, EVF-1 [Development 125 (1998) 5079]. In this report, we show that EVF-1 is a novel, developmentally regulated, non-coding RNA, with no homology to other known non-coding RNA sequences. Sequence analysis, in vitro translation, and comparison of the rat and mouse EVF-1 sequences suggest that EVF-1 contains no protein coding regions. Chromosomal location indicates that EVF-1 maps adjacent to the Dlx6 gene on mouse chromosome 6. RNA in situ hybridization of the embryonic rat forebrain shows that EVF-1 is expressed by immature neurons in the subventricular zone and its expression decreases during forebrain development. Whole mount in situ hybridization shows that EVF-1 is expressed at high levels in the branchial arches, ventral forebrain, olfactory bulb, and limbs. EVF-1 expression is linked to Shh and the Dlx family of proteins, genes with a demonstrated importance to ventral forebrain and craniofacial development.  相似文献   

3.
4.
5.
6.
The complicated genetic pathway regulates the developmental programs of male reproductive organ, anther tissues. To understand these molecular mechanisms, we performed cDNA microarray analyses and in situ hybridization to monitor gene expression patterns during anther development in rice. Microarray analysis of 4,304 cDNA clones revealed that the hybridization signal of 396 cDNA clones (271 non-redundant groups) increased more than six-fold in every stage of the anthers compared with that of leaves. Cluster analysis with the expression data showed that 259 cDNA clones (156 non redundant groups) were specifically or predominantly expressed in anther tissues and were regulated by developmental stage-specific manners in the anther tissues. These co-regulated genes would be important for development of functional anther tissues. Furthermore, we selected several clones for RNA in situ hybridization analysis. From these analyses, we found several novel genes that show temporal and spatial expression patterns during anther development in addition to anther-specific genes reported so far. These results indicate that the genes identified in this experiment are controlled by different programs and are specialized in their developmental and cell types.  相似文献   

7.
8.
MicroRNAs mainly inhibit coding genes and long non-coding RNA expression. Here, we report that hsa-miR-125b and oncogene SIRT7/oncogenic long non-coding RNA MALAT1 were inversely expressed in bladder cancer. Hsa-miR-125b mimic down-regulated, whereas hsa-miR-125b inhibitor up-regulated the expression of SIRT7 and MALAT1. Binding sites were confirmed between hsa-miR-125b and SIRT7/MALAT1. Up-regulation of hsa-miR-125b or down-regulation of SIRT7 inhibited proliferation, motility and increased apoptosis. The effects of up-regulation of hsa-miR-125b were similar to that of silencing MALAT1 in bladder cancer as we had previously described. These data suggest that hsa-miR-125b suppresses bladder cancer development via inhibiting SIRT7 and MALAT1.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
A category of cation gate proteins was shown to be present in sensory neurons and act as receptors of protons present in tissues such as muscles. The Amiloride-sensitive Cation Channel, Neuronal (ACCN) gene family is known to play a role in the transmission of pain through specialized pH sensitive neurons. Muscles from horses submitted to strenuous exercises produce lactic acid, which may induce variable pain through ACCN differential properties. The sequences of the equine cDNAs were determined to be 2.6 kb in length with an open reading frame of 1539 bp for ACCN1 and 2.1 kb in length with an open reading frame of 1602 bp for ACCN3. The ACCN1 gene is 990 kb long and contains 10 exons, and the ACCN3 gene is 4.2 kb long and contains 11 exons. The equine ACCN1 and ACCN3 genes have an ubiquitous expression but ACCN1 is more highly expressed in the spinal cord. We identified one alternative ACCN3 splicing variant present in various equine tissues. These mRNA variants may encode two different protein isoforms 533 and 509 amino acids long. Ten single nucleotide polymorphisms (SNPs) were detected for ACCN1; five in the coding and five in the non-coding region, with no amino acid change, while the three SNPs identified in the coding region of the ACCN3 gene introduce amino acid changes. The equine in silico promoter sequence reveals a structure similar to those of other mammalian species, especially for the ACCN1 gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号