首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The availability of extensive experimental data and remarkable intra- and interspecific variation in breeding behaviour make Achnanthes Bory sensu stricto an especially good model for studying the reproductive and population biology of pennate diatoms. In most Achnanthes species studied, auxospore formation is accompanied by biparental sexual reproduction, but we found uniparental auxosporulation in Achnanthes cf. subsessilis. Auxosporulation appears to be apomictic and follows contraction of the contents of unpaired cells and then a mitotic division, which is normally acytokinetic: one nucleus aborts before the cell develops into an auxospore. Rarely, both daughter nuclei survive and cytokinesis produces two auxospores (two auxospores per mother cell is highly unusual in pennate diatoms); one may abort. Expansion of auxospores is not accompanied by deposition of a transverse perizonium, but a longitudinal perizonium is produced and consists of a wide central strip (structurally similar to the araphid valve) and at least one narrow lateral strip. This newly discovered asexual lineage in Achnanthes is discussed in relation to other reproductive systems found in the genus, and also in relation to the ‘sex clock’ hypothesis concerning the adaptive significance of the diatom life cycle. Brief information on chloroplast division and nuclear dynamics over the cell cycle is also presented.  相似文献   

2.
Recent studies have led to a rapid increase in knowledge of auxospore formation in diatoms. However, these studies have been limited to centric and raphid pennate diatoms, and there is still very little information for the araphid pennate diatoms. Using LM and SEM, we studied the development of the auxospore and the initial cell of the marine epiphytic diatom Gephyria media Arnott. Auxospores were bipolar and curved in side view, as in many other pennate diatoms. SEM revealed many transverse perizonial bands, all of which were incomplete rings. There was an elongate, sprawling, silicified structure beneath the ventral suture of the transverse perizonial bands. This structure is presumably equivalent to the longitudinal perizonial band in other pennate diatoms, although we could not determine the homologous relationship between the two features. Scales were found both in the inner wall of the perizonium and around the primary perizonial bands. The presence or absence of scales may be of phylogenetic significance in diatoms, only during the final stages of auxospore formation because scales are found in early spherical stages. The distinctive finger‐like structures observed throughout all stage of G. media have not been observed before in the other diatom taxa.  相似文献   

3.
Size restoration by the auxospore that develops from the zygote is a crucial stage in diatom life cycles. However, information on sexual events in pelagic diatom species is very limited. We report for the first time auxospore formation by the pennate diatom Fragilariopsis kerguelensis (O'Hara) Hustedt during an iron‐induced bloom in the Southern Ocean (EIFEX, European Iron Fertilization EXperiment). Auxospores of F. kerguelensis resembled those described for Pseudo‐nitzschia species. The auxospore was characterized by an outer coating, the perizonium; two caps, one at each distal end; and four chloroplasts, one at each end and two in the central part. Different stages of auxospore elongation were recorded, with a length of 24–91 μm, but only the largest auxospores contained the initial cell, whose apical axis ranged between 76 and 90 μm. Gametangial cell walls were often attached to the auxospores and ranged from 10 to 31 μm in length. Auxospore abundances were consistently higher in the fertilized patch, where an increase in the F. kerguelensis population was observed, as compared with surrounding waters.  相似文献   

4.
Auxosporulation of the freshwater epipelic diatom Pinnularia nodosa (Ehrenb.) W. Sm. was studied in a clonal culture. Interphase cells possessed two chloroplasts with invaginated pyrenoids. The nucleus contained a single small body of heterochromatin at one end, also visible during most of meiotic prophase. During auxosporulation, induced by transfer of stationary‐phase cells to fresh medium and suppressed by high nitrogen (N), an unpaired mother cell produced a single auxospore. Although meiosis II and nuclear fusion were not observed, indirect evidence indicated that auxosporulation was autogamous (rarely reported in pennate diatoms), rather than apomictic; paedogamy was excluded. The protoplast produced after meiosis either (1) matured into a “pseudozygote,” via an asymmetrical contraction after meiosis I to form a single spherical cell at one end of the mother cell (pathway 1); or (2) constricted into two spherical cells (pathway 2). In pathway 2, the “pseudogametes” never fused and only one or none developed into a pseudozygote and then into an auxospore. Pathway 2 could be suppressed by continuous light. During metamorphosis of the spherical pseudozygote into an elongate young auxospore, a complete covering of thin siliceous incunabular strips was formed, separate from the organic wall formed around the pseudozygote when first formed and from the perizonium. Mature auxospores produced via pathway 2 had 60% of the volume as those produced via pathway 1 and had smaller chloroplasts (through loss of fragments during protoplast cleavage), but they achieved exactly the same lengths, suggesting that absolute length is monitored during expansion.  相似文献   

5.
Reproduction in Rhoicosphenia curvata (Kütz.) Grun. is isogamous. The two auxospores formed expand parallel to the apical axes of the gametangial cells. Expansion is bipolar and leads to the formation of a slightly curved, tapering cell, in which the initial valves are laid down. The perizonium consists of transverse and longitudinal bands. The transverse series, of 35 or so bands, is laid down centrifugally as the auxospore expands and can be classified into three groups on the basis of band morphology. All except the central band are open hoops, orientated so that their ends lie in the midline of the less convex, ventral side of the auxospore. The bands have fimbriate margins on one or both sides, and overlap one another from center to either pole. The longitudinal series includes 5 bands—a wide central band, with two on either side: again, the bands overlap one another from the center outwards. The initial epivalve of the new generation forms beneath the dorsal side of the auxospore, on the opposite side from the longitudinal perizonial series. Comparisons are made with other genera and the relevance of auxospore studies to an understanding of diatom morphogenesis is discussed.  相似文献   

6.
Uniparental auxosporulation was observed in a monoclonal culture of a Sellaphora clone isolated from the epipelon of a fishpond in the Czech Republic. The cox1 sequence for the clone confirmed that it belonged to the Sellaphora pupula–bacillum species complex but showed significant differences from all previously characterized Sellaphora species, and it is therefore described as S. marvanii sp. nov. Protoplast, valve, and girdle structure resembled those of other Sellaphora species, but a novel finding for all diatoms was a change in girdle structure during the life cycle: the most advalvar girdle band (valvocopula) bore a single line of pores in enlarged postauxospore cells but was entirely plain in small cells and gametangia. The young auxospores were covered by incunabula containing large, delicate, ± circular scales, resembling those of centric diatom auxospores; similar scales have been reported in a few other raphid diatoms (Pseudo‐nitzschia multiseries, Diploneis sp.) but contrast with the strip incunabula of some Nitzschia and Pinnularia and the helmet‐like caps of Neidium. The scales persisted during auxospore expansion, mostly as two caps over the auxospore poles. The transverse perizonium comprised a very wide, closed primary band, flanked by numerous secondary bands whose open ends were strongly incurved toward the center. Initial valves were differentiated from their immediate descendants by the very strong external demarcation of the raphe sternum, irregular shape, and curved transapical profile.  相似文献   

7.
Spermatogenesis and auxospore development were studied in the freshwater centric diatom Hydrosera triquetra. Spermatogenesis was unusual, lacking depauperating cell divisions within the spermatogonangium. Instead, a series of mitoses occurred within an undivided cell to produce a multinucleate plasmodium with peripheral nuclei, which then underwent meiosis. 32 or 64 sperm budded off from the plasmodium leaving a large residual cell containing all the chloroplasts. Similar development apparently occurs in Pleurosira, Aulacodiscus, and Guinardia, these being so distantly related that independent evolution of plasmodial spermatogenesis seems likely. After presumed fertilization, the Hydrosera egg cell expanded distally to form a triangular end part. However, unlike in other triangular diatoms (Lithodesmium, Triceratium), the development of triradiate symmetry was not controlled by the “canonical” method of a perizonium that constrains expansion to small terminal areas of the auxospore wall. Instead, the auxospore wall lacked a perizonium and possessed only scales and a dense mat of thin, apparently entangled strips of imperforate silica. No such structures have been reported from any other centric diatoms, the closest analogs being instead the incunabular strips of some raphid diatoms (Nitzschia and Pinnularia). Whether these silica structures are formed by the normal method (intracellular deposition within a silica deposition vesicle) is unknown. As well as being more rounded than vegetative cells, the initial cell is aberrant in its structure, since it has a less polarized distribution of the “triptych” pores characteristic of the species.  相似文献   

8.
Homothallic sexual reproduction and auxosporulation were studied in monoclonal cultures and seminatural populations of the freshwater epipelic diatom Navicula cryptocephala Kütz. Gametangia paired via the girdle, one gamete was formed per gametangium (and hence one zygote per pair of gametangia), and gamete fusion took place without the formation of any copulation envelope or copulation canal. Superfluous nuclei from meiosis survived unusually long, so that gametes and young zygotes were probably functionally polyploid; later, all but two haploid nuclei degenerated. Expanded auxospores had a swollen center, but during formation of the initial valves, the auxospore contracted away from the perizonium to produce linear‐lanceolate valves. The pattern of reproductive behavior found in N. cryptocephala can be classified as type IIA2a auxosporulation in Geitler's system. The same type of zygote and auxospore formation seen in clonal cultures was observed in seminatural material from four lakes in Scotland and the Czech Republic. Variation in nuclear structure and auxosporulation in the N. cryptocephala species complex is discussed, as is the evolution of type II auxosporulation (one zygote per pair of gametangia) from type I auxosporulation (two zygotes per pair). The penalty of smaller numbers of zygote produced in type II may be outweighed by formation of larger auxospores (prolonging the vegetative phase) or more vigorous auxospores. The variation present among members of the N. cryptocephala complex indicates that biogeographical analyses based on use of the name N. cryptocephala, as performed recently to support the ubiquity hypothesis of protist distributions, are almost meaningless.  相似文献   

9.
Single (unpaired) vegetative cells of freshwater pennate diatom Neidium cf. ampliatum differentiated into gametangia and produced a single zygote (auxospore) via a pedogamic process. The gametic nuclei fused after auxospore expansion had begun. The auxospore expanded in parallel to the apical axis of the gametangium.  相似文献   

10.
Cell division, the mating system, and auxosporulation were studied in the marine epipelic diatom Seminavis cf. robusta Danielidis & D. G. Mann. The interphase protoplast contains two girdle‐appressed chloroplasts, each with an elongate bar‐like pyrenoid, and also a central nucleus, located in a bridge between two vacuoles. Before cell division, the chloroplasts divide transversely and translocate onto the valves. The nucleus relocates to the ventral side for mitosis. After cytokinesis and valve formation, the chloroplasts move back to the girdle, showing a constant clockwise movement relative to the epitheca of the daughter cell. Seminavis cf. robusta is dioecious, and sexual reproduction is possible once cells are less than 50 μm. In crosses of compatible clones, gametangia pair laterally, without the formation of a copulation envelope, and produce two gametes apiece. The intensity of sexualization increases as cells reduce further in size below the 50‐μm threshold. At plasmogamy, the gametangia dehisce fully and the gametes, which were morphologically and behaviorally isogamous, fuse in the space between the gametangial thecae. The auxospore forms a transverse and longitudinal perizonium. After expansion is complete, there is an unequal contraction of the protoplast within the perizonium, creating the asymmetrical shape of the vegetative cell. Apart from this last feature, almost all characteristics exhibited by the live cell and auxospores of Seminavis agree with what is found in Navicula sensu stricto, supporting the classification of both in the Naviculaceae. Haploid parthenogenesis and polyploid auxospores were found, lending support to the view that change in ploidy may be a significant mechanism in diatom evolution.  相似文献   

11.
Nitzschia fonticola (Grunow) Grunow is a member of Nitzschia sect. Lanceolatae, a group of taxonomically intractable but ecologically important and widespread diatoms. We investigated the morphology and life cycle in three clones of N. fonticola and all exhibited reduced sexuality, with pedogamous production of auxospores in unpaired gametangia. The auxospores of all clones contained tangles of striplike elements that lay outside the perizonium and were distinct from it in structure and ontogeny. We introduce a new term, incunabula, to refer to such components of the auxospore wall. Semicryptic variation was detected: one clone differed from the other two in valve size and shape, stria density, and fibula density, as well as its nuclear large subunit ribosomal DNA (LSU rDNA) sequence. The implications of reduced sexuality for the taxonomy of sect. Lanceolatae are discussed. A lectotype is designated for N. fonticola from among original material of Grunow, and the application of the name is clarified further by designating illustrations and the LSU sequence AM182191 from one of our clones as epitypes.  相似文献   

12.
The present study clarifies the fine structure of the vegetative frustules, initial valves and perizonium of Achnanthes crenulata Grunow. The valves of the vegetative cell are distinctly linear‐lanceolate with an undulate margin. The valve face is quite flat and in girdle view is smoothly curved as in species of Gephyria (Bacillariophyceae). However, the valve face of the initial cells is slightly rounded and does not have an undulate margin. Furthermore, the rapheless sternum is centrally positioned along the apical axis of the araphid initial valve. As this taxon develops from auxospore to initial valve, it forms only longitudinal perizonial bands; no transverse bands arise. The perizonium consists of three silicified bands: one large, central longitudinal plate and two bands that underlie this plate; these two bands are either open or closed. This taxon has several conspicuous structures compared to other marine species of Achnanthes, but the structure of the perizonium supports the position of A. crenulata within Achnanthes sensu stricto.  相似文献   

13.
Overactive bladder is often characterized by biomechanical changes in the bladder wall, but there is no established method to measure these changes in vivo. The goal of this study was to develop a novel method to determine detrusor wall biomechanical parameters during urodynamics through the incorporation of transabdominal ultrasound imaging. Individuals with overactive bladder (OAB) underwent ultrasound imaging during filling. The fill rate was 10% of the cystometric capacity per minute as determined by an initial fill. Transabdominal ultrasound images were captured in the midsagittal and transverse planes at 1 min intervals. Using image data and Pves, detrusor wall tension, stress, and compliance were calculated. From each cross  sectional image, luminal and wall areas along with inner perimeters were measured. In the sagittal and transverse planes, wall tension was calculated as Pves 1 luminal area, wall stress as tension/wall area, and strain as the change in perimeter normalized to the perimeter at 10% capacity. Elastic modulus was calculated as stress/strain in the medial–lateral and cranial-caudal directions. Patient-reported fullness sensation was continuously recorded. Data from five individuals with OAB showed that detrusor wall tension, volume, and strain had the highest correlations to continuous bladder sensation of all quantities measured. This study demonstrates how detrusor wall tension, stress, strain, and elastic modulus can be quantified by adding ultrasound imaging to standard urodynamics. This technique may be useful in diagnosing and better understanding the biomechanics involved in OAB and other bladder disorders.  相似文献   

14.
We document the fine structure of auxospores in a Chaetoceros species isolated from the Acadian coast of New Brunswick, Canada. Auxospore development in this species occurs in a terminal rather than lateral position, a characteristic never before observed in this genus. Our observations suggest that auxosporulation was uniparental, probably an extreme form of autogamy with sister nuclei fusing following meiosis II. Mature auxospores were adze-shaped to sub-globular and contained both scales and transverse perizonia in their walls. The transverse perizonial band structure was similar to longitudinal perizonial bands found in other species of Chaetoceros and differed from the pinnate bands of pennate transverse perizonia, which consisted of a central rib and bilateral fimbria. Instead, the band structure in C. acadianus was more similar to unilateral fimbriate bands in cymatosiroids. We also propose that our diatom represents a species new to science and is a member of the Chaetoceros Section Compressa. We provide its morphological, molecular and reproductive characterization.  相似文献   

15.
《Harmful algae》2009,8(1):111-118
The nitrogen uptake capabilities of the toxigenic diatom Pseudo-nitzschia australis (Frenguelli), freshly isolated from Monterey Bay California, were examined in unialgal laboratory cultures at saturating photosynthetic photon flux densities (100 μmol photons m−2 s−1) and 15 °C. The kinetics of nitrogen (nitrate, ammonium, urea and glutamine) uptake as a function of substrate concentration were estimated from short (20.5 min) incubations using the 15N-tracer technique. Based on the estimated maximum specific uptake rates and measures of N affinity (the initial slope of the uptake versus nutrient concentration curve), nitrate is the preferred nitrogen substrate, followed by glutamine and ammonium, which are equivalent. Rates of urea uptake by P. australis did not saturate at concentrations as high as 36 μg-at N L−1, and urea uptake as a function of concentration could not be described by Michaelis–Menten kinetics over the concentration gradient tested. Although there is a clear preference for nitrate at equivalent concentrations (compared to ammonium, urea, and glutamine), these laboratory results demonstrate the capability of this pennate diatom to utilize both inorganic and organic forms of nitrogen, supporting field observations that P. australis blooms during both upwelling and non-upwelling conditions off the west coast of North America. Substantial differences in the nitrogenous nutrition of P. australis can be expected in these environments, and anthropogenic inputs of N substrates such as ammonium and urea can support its growth, and may contribute significantly to both harmful diatom blooms and the maintenance of seed populations at non-bloom abundances, particularly during periods of reduced or absent upwelling.  相似文献   

16.
Auxospore formation by allogamy in pennate diatoms has been known for a long time, but more recently many kinds of peculiar behavior have come to light. An example of these is the amazing and quite unexpected relationships existing between the alternative site of epi- and hypotheca and the establishment of plasmatic gradients in the cell on the one hand and the determination of mating types on the other. Furthermore, there are remarkable specific relations between the formation of copulation-tubes (or canals) and the mode of pairing, as well as the kind of gamete fusion. There are, too, specific relationships between the mode of gamete fusion and the position of the polar axes in the auxospores and the primary cells. Although there are great variations, one can determine certain types and rules of behavior in pairing and auxospore formation. On the other hand there are certain events, e.g., a “spontaneous plasmolysis” in the auxospores of some races of Navicula cryptocephala, by which the abnormal shape of the primary cell—otherwise inevitable—is avoided.  相似文献   

17.
The distribution of the toxic pennate diatom Nitzschia was investigated at four mangrove areas along the coastal brackish waters of Peninsular Malaysia. Eighty-two strains of N. navis-varingica were isolated and established, and their identity confirmed morphologically and molecularly. Frustule morphological characteristics of the strains examined are identical to previously identified N. navis-varingica, but with a sightly higher density of the number of areolae per 1 μm (4–7 areolae). Both LSU and ITS rDNAs phylogenetic trees clustered all strains in the N. navis-varingica clade, with high sequence homogeneity in the LSU rDNA (0–0.3%), while the intraspecific divergences in the ITS2 data set reached up to 7.4%. Domoic acid (DA) and its geometrical isomers, isodomoic A (IA) and isodomoic B (IB), were detected in cultures of N. navis-varingica by FMOC-LC-FLD, and subsequently confirmed by LC–MS/MS, with selected ion monitoring (SIM) and multiple reaction monitoring (MRM) runs. DA contents ranged between 0.37 and 11.06 pg cell−1. This study demonstrated that the toxigenic euryhaline diatom N. navis-varingica is widely distributed in Malaysian mangrove swamps, suggesting the risk of amnesic shellfish poisoning and the possibility of DA contamination in the mangrove-related fisheries products.  相似文献   

18.
The cellular compartmentation of heavy metals was analyzed using mulberry leaves, in which CaCO3-forming idioblasts are situated in the epidermal layer. Germinated mulberry seedlings were grown on hydroponic culture medium containing strontium (Sr), zinc (Zn), and cadmium (Cd) with and without supplemental calcium (Ca). After ten weeks of growth, toxic effects of these metals were assessed by measuring shoot length and chlorophyll content of leaves. Sr and Cd treatment at a higher dose (4 mM for Sr, 25 μM for Cd) resulted in signs of toxicity, whereas no distinct phytotoxicity was observed at 500 μM Zn. Elemental mapping of leaves using an energy-dispersive X-ray microanalysis system fitted to variable-pressure scanning electron microscope showed that Sr and Zn were preferentially accumulated in the idioblasts and Cd was not detected in any type of leaf cell. The deposition site of Sr was confined to cell wall sacs developing in idioblasts. The Sr sink capacity in leaves was more than 30 mg/g dry weight, which equaled the Ca sink capacity. Exposure of Sr + Ca led to the co-localization of Sr and Ca in the same cell wall sac, in which Ca and Sr deposition were each estimated to be 60–80 ng. The localization site of Zn was cell walls of a dome-shaped protrusion (cap) of idioblasts, together with silicon (Si) originating as a contaminant in tap water used for culturing. Mulberry idioblasts were unique in showing metal-dependent distribution to two subcellular sites (cell wall sac and cap region) of idioblasts. In conclusion, mulberry plant is a candidate for phytoremediation of radiostrontium because of their Sr-hyperaccumulating capacity with sufficient leaf biomass production.  相似文献   

19.
This paper describes the perizonium and initial valve formation in Navicula cuspidata Kütz., based on light microscope (LM) and scanning electron microscope (SEM) observations. The perizonium consists of concentric over-lapping bands, laid down sequentially at the tips of the expanding biconical auxospore during its elongation. The central perizonial band has fimbriate edges and is considerably more rigid than the more distal bands. During auxospore elongation and the band secretion, the chloroplasts continuously oscillate between the two ends of the cell; this oscillation ceases once the elongation is complete. The initial valves, formed within the perizonium, are molded into the basically biconical shape of the perizonium except for a central flattening of each valve face. In contrast to the raphes in gametangial and vegetative valves which are surrounded by a smooth axial area, the raphes in initial valves lie within a raised ridge running along the apical axis of the valve. The regular pattern of apically oriented ridges on the outer surface of vegetative valves is also lacking on initial valves. Comparison of pore–pore spacing within striae of gametangial valves, initial values and post-initial valves (first division and vegetative cells) reveals that the pore–pore distance within striae is conserved at all sexual stages. However, the distance between striae is considerably larger in initial valves than in gametangial and post-initial valves. Vegetative interstriae spacing as well as the planar morphology of the valve face is regained at the first division of the initial cell. This suggests that the spacing between striae is dependent on the sexual stage of the cell during valve formation (i.e. not directly dependent on the cell size) and can be altered independently of the pore–pore spacing.  相似文献   

20.
Thalassiosira species are common components of marine planktonic communities worldwide and are used intensively as model experimental organisms. However, data on life cycles and sexuality within the genus are fragmentary. A clone of the cosmopolitan marine diatom Thalassiosira punctigera Cleve emend. Hasle was isolated from the North Sea and oogamous sexual reproduction was observed in culture. Cells approximately 45 μm and smaller became sexualized. Oogonia were produced preferentially and spermatogenesis was infrequent. Unfertilized oogonia always aborted and their development was apparently arrested at prophase of meiosis I. Further progression through meiosis and auxospore formation occurred only after a sperm had penetrated into the oocyte. Many cells of the new large‐celled generation (approximately 90–120 μm in size) immediately became sexualized again but only oogonia were produced. A few of the large oogonia became auxospores and produced initial cells 132–153 μm in diameter. The second step of auxosporulation probably involved fertilization of large‐celled oocytes by the sperm of the small‐celled spermatogonangia that were still present in the culture. An F1 clone obtained after selfing within the small‐celled auxosporulation size range was investigated. Like the parent clone, the F1 clone was homothallic but no auxosporulation was observed: spermatogonangia were unable to produce viable sperm, apparently because of inbreeding depression. Aggregation and interaction of oogonia were documented, and may be relevant for understanding the mechanisms of signaling and recognition between sexualized cells and the evolution of sexuality in pennate diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号