首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【背景】内生固氮菌可以定殖于植物体内为植物提供营养物质,还能通过代谢促进植物生长,目前对于落地生根内生菌的研究鲜见报道。【目的】研究落地生根中内生固氮菌多样性。【方法】从表面消毒的植物组织中分离纯化内生菌,并通过乙炔还原法测定菌株的固氮酶活性。采用SDS-PAGE全细胞蛋白电泳和IS指纹图谱对菌株聚类,各类群代表菌株进行16S rRNA基因系统发育分析和生理生化鉴定。测定菌株固氮、分泌生长素和ACC脱氨酶、产铁载体、溶磷和解钾等促生特性。【结果】从落地生根中分离纯化出26株内生固氮菌,聚为5个类群,隶属于4个属的5个菌种,且各类群代表菌株具有多种促生功能。【结论】从落地生根中分离获得的内生菌具有丰富的遗传多样性和促生特性,并且存在新的微生物资源,有待开发利用。  相似文献   

2.
攀枝花地区烤烟可培养内生固氮菌的多样性   总被引:1,自引:0,他引:1  
【目的】认识烤烟(Flue-cured tobaccos)内生固氮菌多样性,挖掘内生固氮菌资源,丰富内生固氮菌基因库。【方法】运用纯培养法、重复因子扩增(BOX-PCR)分析技术、16S r RNA基因测序和系统发育分析对内生固氮菌多样性和系统发育进行研究,并测定分离菌株的固氮酶活性、溶磷溶钾特性、吲哚乙酸(IAA)含量等指标。【结果】通过Ashby培养基共分离得到62株固氮菌。基于BOX-PCR图谱选取16株代表菌株进行16S r RNA基因序列测定。16S r RNA基因序列系统发育分析显示,62株菌株分属于芽孢杆菌属(Bacillus)、泛菌属(Pantoea)、短小杆菌属(Curtobacterium)等3个属,其中芽孢杆菌属(Bacillus)为优势菌属。62株菌株中有20株菌株(占总分离菌株的32.3%)具有固氮酶活性,8株菌株(占总分离菌株的12.9%)能产IAA,有4株(占总分离菌株的6.5%)表现溶磷活性,有3株(占总分离菌株的4.8%)表现溶钾活性。【结论】攀枝花烤烟有较为丰富的内生固氮菌,具有潜在应用价值。  相似文献   

3.
In this study, 41 culturable endophytic bacteria were isolated from the roots and shoots of three wetland plants, Typha domingensis, Pistia stratiotes and Eichhornia crassipes, and identified by 16S rRNA gene sequencing. Textile effluent-degrading and plant growth-promoting activities of these endophytes were determined. The analysis of endophytic bacterial communities indicated that plant species had a pronounced effect on endophytic bacterial association and maximum endophytes (56.5%) were associated with T. domingensis. These endophytic bacteria mainly belonged to different species of the genera Bacillus (39%), Microbacterium (12%) and Halomonas (12%). Eight of the 41 strains showing maximum efficiency of textile effluent degradation also exhibited plant growth-promoting activities such as production of indole-3-acetic acid and siderophore, presence of 1-amino-cyclopropane-1-carboxylic acid deaminase, and solubilization of inorganic phosphorous. This is the first study describing the diversity and plant-beneficial characteristics of the textile effluent-degrading endophytic bacteria associated with wetland plants. T. domingensis showed better growth in textile effluent and also hosted maximum number of endophytic bacteria in roots and shoots. The interactions between T. domingensis and its associated endophytic bacteria could be exploited to enhance the efficiency of constructed wetlands during the remediation of industrial effluent.  相似文献   

4.
【背景】植物内生细菌既能抑制病原菌对植物的侵染,也具有促生作用。分离具有拮抗和促生活性的内生细菌可为开发微生物菌肥提供理论依据。【目的】筛选内生细菌中的优势拮抗、促生菌种资源。【方法】以地锦草为材料,采用4种分离培养基分离该植物内生细菌,通过形态特征以及16S r RNA基因序列分析,鉴定内生细菌的分类归属。采用平板对峙法,测定内生细菌对棉花立枯丝核菌(Rhizoctonia solani)、小麦赤霉病菌(Fusarium graminearum)、玉米小斑病菌(Bipolaris maydis)的拮抗活性。通过固氮、解磷、产吲哚乙酸(Indole Acetic Acid,IAA)、产铁载体能力等指标初步检测地锦草内生细菌的促生活性。【结果】共分离到133株内生细菌,分属于4门5纲8目13科25属,其中变形菌门(Proteobacteria)为优势门(52.63%),优势属为芽孢杆菌属(Bacillus),占15.79%。发现有8株菌相似性小于98.65%,可能为潜在新物种。拮抗活性结果表明,22株菌有不同程度的抑菌作用,其中菌株DHL56、DHN17、DHP3、DHP8对这3种病原菌都有抑制作用,均为芽孢杆菌属。菌株DHP8抑制作用最强,对棉花立枯丝核菌、小麦赤霉病菌抑制率分别为73.80%、71.25%,对玉米小斑病菌抑制率为61.70%。促生潜力结果表明,76株菌具有固氮能力;19株菌具有解磷能力;37株菌能产吲哚乙酸,菌株DHL55产吲哚乙酸的量达到105.67mg/L;7株菌能合成铁载体。其中有9株菌同时有固氮、解磷、产吲哚乙酸能力;菌株DHP8具有固氮、解磷、合成铁载体能力。DHP8不仅具有一定促生潜力,还对棉花立枯丝核菌、小麦赤霉病菌、玉米小斑病菌有明显的拮抗作用,需进一步研究。【结论】地锦草内生细菌种类丰富,获得多株具有优良拮抗和促生活性的菌株,为进一步开发微生物农药及菌肥资源提供新的菌株材料。  相似文献   

5.
【背景】植物内生菌长期与宿主共生,对宿主生长发育产生影响。葛根作为重要的药食两用作物,葛根内生菌的研究具有重要实践意义。【目的】对广西葛根根部内生细菌进行分离、鉴定及促植物生长特性分析,旨在了解该药食同源植物内生细菌种群结构及其促生特性,为分析内生菌群体在药食同源植物产量和品质形成的作用及其内生细菌资源的开发利用提供参考。【方法】采用6种不同的培养基从广西葛根的根瘤、根系和根愈伤组织分离内生细菌,16S rRNA基因测序和系统发育分析内生细菌的分布特征和遗传多样性,采用生理生化方法测定分离菌株的固氮活性、溶磷特性、产生嗜铁素、分泌吲哚乙酸(indole-3-aceticacid,IAA)等促生特性。【结果】从葛根根瘤、根系和根部愈伤组织中共分离得到223个菌株,16S rRNA基因测序鉴定这些菌株隶属于2门4纲10科19属,其中芽孢杆菌属、假单胞菌属、土壤杆菌属、肠杆菌属为葛根优势菌群;内生细菌数量和群落组成存在明显的组织特异性,其数量表现为根瘤>根系>根愈伤组织,但其种群多样性表现为根愈伤组织>根系>根瘤。不同培养基分离出的细菌种群丰富度有差异。从供试菌株中筛...  相似文献   

6.
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.  相似文献   

7.
郭鹤宝  何山文  王星  章俊  张晓霞 《微生物学报》2019,59(12):2285-2295
【目的】Pantoea菌株是广泛分布在自然界中的一类功能多样的细菌。本研究对分离自水稻种子内生的Pantoea菌株进行系统发育分析及功能评价,从而确定分类地位、种类多样性、分布特征及功能特性。【方法】采用乙醇-次氯酸钠联合灭菌方法进行水稻种子的表面灭菌,进行内生细菌的分离与纯化;其次将纯化后的菌株进行16Sr RNA基因PCR扩增及序列分析,通过MEGA7软件构建系统发育树;将分离得到的菌株进行功能实验检测,如溶磷、产IAA、产铁载体、拮抗病原真菌等特性,最后检测菌株的溶血性;水稻分型采用SSR方法,并对水稻农学性状如分蘖数、株高、植株重及产量进行调查。【结果】本研究对分离自8个不同基因型水稻种子中的146株内生Pantoea菌株进行系统发育分析及功能评价,结果发现所分离到的泛菌菌株主要属于Pantoea dispersa、Pantoea agglomerans、Pantoea cypripedii以及Pantoea brenneri四个种,其中P. dispersa的菌株数量最多,分布最广,并且存在于所有的8个水稻种子样品中。对其中66株菌进行功能检测,发现86.3%和69.7%的菌株具有溶磷和产IAA能力,有7株菌具有产铁载体能力,未发现对真菌病害Fusarium moniliforme有拮抗作用的菌株,并发现3株菌具有溶血性;本实验未发现泛菌组成与水稻系统发育及农学性状存在明显的相关性。【结论】本研究首次对水稻种子中泛菌的多样性及其功能进行报道,发现不同基因型的水稻种子所含Pantoea种类及组成存在差异,种子选择性地积累了Pantoea类群,大部分菌株具有一定的促生特性。该研究结果有助于进一步探究微生物与植物的共进化、种子微生物的传播途径及作用方式。  相似文献   

8.
There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.  相似文献   

9.
【目的】本研究分析三株固氮菌PGPR性状特征及其对中国青菜产量和土壤酶活的影响。【方法】氮(N)-修复(固氮)细菌被认为是一种能够促进植物生长和增产的施氮方式。在本研究中,我们用无氮培养基分离出了30株根际固氮细菌:11株来自小麦根际,16株来自中国青菜根际和3株来自莲花根际。基于16S r DNA序列分析,对小麦、中国青菜和莲花等植物根际中属于类芽孢杆菌属的主要固氮细菌进行研究。【结果】本研究从这30株固氮菌中筛选出三株属于类芽孢杆菌属(Paenibacillus)的细菌,分别命名为P-4、W-7和L-3,它们的固氮酶活性不但高于对照组(圆褐固氮菌),而且可以有效抑制两种或三种植物病原菌的生长,即核盘菌(Sclerotinia sclerotiorum)、玉蜀黍赤霉(Gibberella zeae)和棉花黄萎病菌(Verticillium dahliae)。菌株W-7还具有溶解难溶磷的能力,中国青菜在接种菌株W-7和L-3后,其鲜重显著增加,同时改变了田间土壤蔗糖酶、磷酸酶和过氧化氢酶的活性;而接种了菌株P-4对植物的生长和酶活性没有显著的影响。【结论】土壤蔗糖酶、磷酸酶和过氧化氢酶活性与中国青菜的生物量呈正相关。同时,菌株W-7和L-3具有促进植物产量和提高土壤质量的良好潜力。  相似文献   

10.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

11.
为寻找新的能产生抗生素的植物内生真菌,采用3种培养基对毛泡桐进行内生真菌的分离,以大肠埃希菌、枯草芽胞杆菌、金黄色葡萄球菌、青枯假单胞菌为指示菌,利用琼脂块法和滤纸片扩散法筛选能抑制细菌的菌株;通过形态特征和ITS序列分析鉴定高活性菌株。结果从毛泡桐的根、茎、叶中共分离得到46株内生真菌,至少能抑制一种指示菌的有9株,其中菌株KLBMP-Pt630、KLBMP-Pt675和KLBMP-Pt686活性较强,鉴定结果显示:KLBMP-Pt630为三线镰刀菌、KLBMP-Pt675为棒曲霉、KLBMP-Pt686属于肉座菌目真菌。  相似文献   

12.
A total of 72 isolates of root-associated/endophytic (RAE) bacteria were isolated from peanut plants grown in the main producing areas of 6 provinces in China. The 16S rRNA gene sequences of these isolates were determined and phylogenetic analyses revealed that 72 isolates belonged to the classes Bacilli (49 isolates) and Gammaproteobacteria (23 isolates). The majority of RAE bacteria in Bacilli belonged to 2 genera, Bacillus and Lysinibacillus (48 and 1) while those in Gammaproteobacteria belonged to the genera Enterobacter, Serratia, Stenotrophomonas, and Pseudomonas (7, 11, 3 and 2 isolates, respectively). This is the first report of Lysinibacillus xylanilyticus isolate as biocontrol agent against AFs. All of the selected RAE bacteria showed inhibitory activities against Aspergillus parasiticus (A. parasiticus) growth and/or aflatoxins (AFs) production by visual agar plate assay and tip culture method. Most of the RAE bacteria strains (96?% strains) were determined to have decreased mycelia growth or AFs production levels by >50?% (p?<?0.05). Bacterial isolates were further characterized for chitinolytic activity and 22 strains (30?% strains) of identified RAE bacteria degraded colloidal chitin on the chitin medium plate. Ten selected chitinolytic RAE bacteria were tested for antifungal activity on peanuts and most of them significantly decreased mycelial growth and AFs production levels by >90?%. These results showed a wide distribution of biological control bacteria against AFs in Chinese peanut main producing areas and the selected RAE bacteria could potentially be utilized for the biocontrol of toxicogenic fungi.  相似文献   

13.
It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural abundance, acetylene reduction and 15N incorporation. Plants were also screened for the presence of endophytic diazotrophic bacteria using acetylene reduction and nifH-gene targeted PCR with the pure bacterial strains. 15N natural abundance studies on field-grown sugarcane indicated that the plants did not rely extensively on biological nitrogen fixation. Furthermore, no evidence was found for significant N2-fixation or nitrogenase activity in field-grown or glasshouse-grown plants using 15N incorporation measurements and acetylene reduction assays. Seven endophytic bacterial strains were isolated from glasshouse-grown and field-grown plants and cultured on N-free medium. The diazotrophic character of these seven strains could not be confirmed using acetylene reduction and PCR screening for nifH. Thus, although biological nitrogen fixation may occur in South African sugarcane varieties, the contribution of this N-source in the tested cultivar was not significant.  相似文献   

14.
Application of environmentally friendly agents to reduce the use of chemicals and to enhance growth of plants is an ultimate goal of sustainable agriculture. The use of plant growth-promoting endophytes has become of great interest as a way to enhance plant growth and additionally protect plants from phytopathogens. In this study, 135 isolates of endophytic bacteria including actinomycetes were isolated from roots of commercial sugarcane plants cultivated in Thailand and were characterized for plant growth-promoting (PGP) traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 14 genera of which the most dominant species belong to Bacillus, Enterobacter, Microbispora, and Streptomyces. Two strains of endophytic diazotrophs, Bacillus sp. EN-24 and Enterobacter sp. EN-21; and two strains of actinomycetes, Microbispora sp. GKU 823 and Streptomyces sp. GKU 895, were selected based on their PGP traits including 1-aminocyclopropane-1-decarboxylate deaminase, indole-3-acetic acid, nitrogen fixation, phosphate solubilization, and siderophore production for evaluation of sugarcane growth enhancement by individual and co-inoculation. Sixty days after co-inoculation by endophytic diazotrophs and actinomycetes, the growth parameters of sugarcane plants were significantly greater than that of individual and un-inoculated plants. The results indicated that these endophytes have high potential as PGP agents that could be applied to promote sugarcane growth and could be developed as active added value biofertilizers in the future.  相似文献   

15.
香蕉植株内生细菌群落多态性研究   总被引:1,自引:0,他引:1  
采用平板法对香蕉(Musa nana)植株的内生细菌进行分离纯化,并采用细菌脂肪酸法进行鉴定。结果表明,从香蕉的健康植株和感病植株中共分离得到内生细菌21属24种。从健株分离得到9种内生细菌,其中根、茎和叶分别分离到6种、2种和8种内生细菌。从病株分离得到15属17种内生细菌,其中根、茎和叶分别分离到3种、11种和6种。香蕉健株根部的内生细菌含量最高,达5.195×106cfu g-1,下部叶片内生细菌的含量最低,仅为30 cfu g-1;香蕉病株茎部内生细菌的数量显著高于其他部位,达1.05×107cfu g-1。这说明香蕉在不同生长状态下,其内生细菌的种类和数量存在多样性。  相似文献   

16.

Background and aims

Rhizospheric, epiphytic and endophytic bacteria are associated with several non-legumes, colonizing their surface and inner tissues. Many of these bacteria are beneficial to their hosts, and are collectively termed plant growth-promoting rhizobacteria (PGPR). Recent interest has focused particularly upon PGPR that are endophytic (i.e. PGPE), and which have been reported to be associated with important crops such as rice, wheat and sugarcane. Different mechanisms are involved in bacteria-induced plant growth promotion (PGP), including biological nitrogen fixation (BNF), mineral solubilization, production of phytohormones and pathogen biocontrol. In Uruguay, sugarcane (Saccharum officinarum L.) is considered a strategic multipurpose crop, used for bioenergy, feed, sugar and bioethanol production. The aim of this work was to estimate the BNF contribution to Uruguayan sugarcane cultivars, as well as to identify and characterize the (culturable) putatively endophytic diazotrophic bacteria associated with these varieties.

Methods and results

Results using the 15N-dilution technique have shown that these sugarcane varieties obtain significant inputs of N from BNF (34.8–58.8% Ndfa). In parallel, a collection of 598 isolates of potentially endophytic diazotrophs was obtained from surface-sterilized stems using standard isolation techniques, and nifH + isolates from these were the subject of further studies. The bacteria were shown to belong to several genera, including Pseudomonas, Stenotrophomonas, Xanthomonas, Acinetobacter, Rhanella, Enterobacter, Pantoea, Shinella, Agrobacterium and Achromobacter. Additionally, some PGP features were studied in 35 selected isolates. The data obtained in this study represent the initial steps in a program aimed at determining the mechanisms of PGP of non-legume crops in Uruguay (such as sugarcane) with potentially beneficial plant-associated bacteria.  相似文献   

17.
《农业工程》2020,40(5):383-387
The adverse effects of chemical synthetic fungicides on agricultural fields and the environment are driving a need to search for safer and less environmentally harmful plant protectants to move toward more sustainable development of agriculture. The endophytic fungal community associated with the medicinal plant Stephania dielsiana, and its potential for providing antimicrobial secondary metabolites were investigated. A total of 26 isolates of endophytic fungi were obtained, and 21 isolates were identified and classified into eight different genera, including Briansuttonomyces, Glomerella, Pleosporales, Diaporthe, Phoma, Penicillium, Periconia and Colletotrichum, and the most frequent endophytic species obtained were Diaporthe phaseolorum, Penicillium sp., Periconia igniari and Colletotrichum sp. The ethyl acetate (EtOAc) extract of the endophytic fungus Diaporthe phaseolorum Stdif6 displayed the most significant antifungal activity against all tested phytopathogens, with EC50 values ranging from 0.0138 to 0.3103 mg/mL. While the EtOAc extract of the endophytic fungus Penicillium sp. Stdif9 exhibited greater potential for antibacterial activity, with the minimum inhibitory concentration (MIC) values against seven bacteria ranging from 1.25 to 6 mg/mL. The remarkable antimicrobial activity of fungal endophytes suggests that fungal endophytes harbored inside the root tubers of S. dielsiana hold great promise as biocontrol agents against a broad spectrum of economically significant pathogens.  相似文献   

18.
Siderophore producing potential of 20 fungal isolates (same 10 species from each marine and terrestrial habitat) were examined and compared. Except marine Aspergillus flavus, all isolates produced siderophores as evidenced by positive reaction in FeCl3 test, CAS assay and CAS agar plate test. The results indicated widespread occurrence of siderophores in both the habitats. Examination of the chemical nature of siderophores revealed that mucoraceous fungi produced carboxylate, while others produced hydroxamate siderophores. Thus, the nature of siderophore was found to be independent of habitat. Among all the isolates, Cunninghamella elegans (marine form) was maximum siderophore producer (1987.5 μg/ml) followed by terrestrial form of C. elegans (1248.75 μg/ml). There was no marked variation in siderophore concentration of Penicillium funiculosum strains. Comparison of quantification of siderophore production between marine and terrestrial revealed that four terrestrial isolates (Aspergillus niger, Aspergillus ochraceous, Penicillium chrysogenum, Penicillium citrinum) were ahead in siderophore production, while, the other four marine isolates (Aspergillus versicolor, C. elegans, Rhizopus sp., Syncephalastrum racemosum) were found to be more potent siderophore producers, indicating that they were equally competent.  相似文献   

19.
A variety of plants growing on metalliferous soils accumulate metals in their harvestable parts and have the potential to be used for phytoremediation of heavy metal polluted land. There is increasing evidence that rhizosphere bacteria contribute to the metal extraction process, but the mechanisms of this plant–microbe interaction are not yet understood. In this study ten rhizosphere isolates obtained from heavy metal accumulating willows affiliating with Pseudomonas, Janthinobacterium, Serratia, Flavobacterium, Streptomyces and Agromyces were analysed for their effect on plant growth, Zn and Cd uptake. In plate assays Zn, Cd and Pb resistances and the ability of the bacteria to produce indole-3-acetic acid (IAA), 1-amino-cyclopropane-1-carboxylic acid deaminase (ACC deaminase) and siderophores were determined. The isolates showed resistance to high Zn concentrations, indicating an adaptation to high concentrations of mobile Zn in the rhizosphere of Salix caprea. Four siderophore producers, two IAA producers and one strain producing both siderophores and IAA were identified. None of the analysed strains produced ACC deaminase. Metal mobilization by bacterial metabolites was assessed by extracting Zn and Cd from soil with supernatants of liquid cultures. Strain Agromyces AR33 almost doubled Zn and Cd extractability, probably by the relase of Zn and Cd specific ligands. The remaining strains, immobilized both metals. When Salix caprea plantlets were grown in γ-sterilized, Zn/Cd/Pb contaminated soil and inoculated with the Zn resistant isolates, Streptomyces AR17 enhanced Zn and Cd uptake. Agromyces AR33 tendentiously promoted plant growth and thereby increased the total amount of Zn and Cd extracted from soil. The IAA producing strains did not affect plant growth, and the siderophore producers did not enhance Zn and Cd accumulation. Apparently other mechanisms than the production of IAA, ACC deaminase and siderophores were involved in the observed plant–microbe interactions.  相似文献   

20.

Background and aims

Some elephant grass (Pennisetum purpureum) genotypes are able to produce large amounts of biomass and accumulate N derived from BNF when growing in soil with low N levels. However, information about the diazotrophic bacteria colonizing this C4 plant is still very scarce. This study aimed to characterize the plant growth promoting traits of a fraction of culturable diazotrophs colonizing the genotypes CNPGL F06-3 and Cameroon.

Methods

A total of 204 isolates were obtained from surface sterilized leaves, stems and roots after culturing on five different N-free semisolid media. These were then analyzed by BOX-PCR, and the 16S rRNA and nifH sequences of representative isolates were obtained. The functional ability of the isolates to reduce acetylene, produce indole and to solubilize phosphate was also determined.

Results

The diazotrophic bacterial population varied from 102 up to 106 bacteria g?1 fresh tissues of both genotypes. The BOX-PCR analysis suggested a trend in the genetic diversity among the 204 diazotrophic strains colonizing the different genotypes and plant tissues. Sequencing of 16S rRNA fragments confirmed the presence of Azospirillum brasilense and Gluconacetobacter diazotrophicus and revealed for the first time the occurrence of G. liquefaciens, G. sacchari, Burkholderia silvatlantica, Klebsiella sp., Enterobacter cloacae and E. oryzae in elephant grass. Interestingly, several nifH sequences from isolates identified as G. liquefaciens and G. sacchari showed homologies with nifH sequences of Enterobacter species. The majority of the isolates (97%) produced indole compounds, 22% solubilized phosphate and 6.4% possessed both characteristics.

Conclusions

The results showed the occurrence of novel diazotrophic bacterial species colonizing different tissues of both genotypes of elephant grass. In addition, the study revealed the presence of several bacteria with growth promoting traits, and highlighted their potential to be exploited as biofertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号