首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The concentrations of 26 major to trace elements in rat kidneys aging from 5 to 113 weeks old were determined. The rats investigated were the same rats used previously reported to have 29 elements in bones (femurs). The samples were decomposed by high purity nitric acid and hydrogen peroxide. Eight elements (Na, Mg, Si, P, K, Ca, Fe and Zn) were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and 18 elements (Mn, Co, Ni, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi and U) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The aging effects on the concentrations of these elements and mutual elemental relationships were investigated. Analysis of variance (ANOVA) for age variations indicated that the concentrations of P, K, Mn and Mo were almost constant across the age of rats (p > 0.3). The concentration of many elements such as Na, Mg, Ca, Fe, Co, Cu, Zn, As, Se, Cd, Sn, Sb, Tl, Pb and Bi, showed significant increasing trends (p < 0.01) with different patterns. Rubidium, Cs, Pb and Bi showed significant age variations but not monotonic trends. Silicon, Ni, Sr, Ba and U showed large concentration scatterings without any significant trends (p > 0.01). The metabolism of these elements may not be well established in the kidney. Many toxic elements such as As, Cd, Sn, Pb and Bi showed a narrow concentration range among age-matched rats. The kidney may have established metabolic mechanisms to confine or accumulate these toxic elements even though their concentrations are very low (e.g., 10 ng g?1 of Cd). These elements also closely coupled with Fe. A cluster analysis was performed using an elemental correlation matrix and indicated that these elements, including Fe, formed a cluster. However, another cluster analysis using “an aging effect eliminated” elemental correlation showed different clustering in which the Fe, Cd cluster disappeared.  相似文献   

2.
ObjectivesThe aim of this study was to investigate blood lead level and its relationship to essential elements (zinc, copper, iron, calcium and magnesium) in school-age children from Nanning, China.MethodsA total of 2457 children aged from 6 to 14 years were enrolled in Nanning, China. The levels of lead (Pb), zinc (Zn), copper (Cu), iron (Fe), calcium (Ca) and magnesium (Mg) were determined by an atomic absorption spectrometer.ResultsThe mean blood lead level (BLL) was 57.21 ± 35.00 μg/L. 188 (7.65%) asymptomatic children had toxic lead level higher than 100 μg/L. The school-age boys had similar lead level among different age groups, while the elder girls had less BLL. The blood Zn and Fe were found to be increased in the boys with elevated BLL, but similar trends were not observed in the girls. Positive correlations between Pb and Fe or Mg (r = 0.112, 0.062, respectively, p < 0.01) and a negative correlation between Pb and Ca (r = −0.047, p < 0.05) were further established in the studied children.ConclusionsLead exposure in school-age children was still prevalent in Nanning. The boys and girls differed in blood levels of lead and other metallic elements. Lead exposure may induce metabolic disorder of other metallic elements in body.  相似文献   

3.
The concentrations of 22 major and trace elements in livers from rats aging from 5 to 113 weeks old were determined. The rats investigated were the same rats previously reported with respect to 29 elements in bones (femur) and 26 elements in kidneys. The samples were decomposed with high-purity nitric acid and hydrogen peroxide. Seven elements (Na, Mg, P, K, Ca, Fe and Zn) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), and 15 elements (Mn, Co, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Pb and Bi) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of variance (ANOVA) for age variations indicated that the concentrations of many elements, such as Mg, P, K, Mn, Fe, Cu, Zn, Sr, Mo and Cd, were almost constant across the ages of the rats with the exception of 5 weeks old (p > 0.05). Arsenic, Pb and Bi showed significant increasing trends, while Na and Co showed decreasing trends (p < 0.01). Selenium showed a decreasing trend except at the initial stage of 5–9 weeks old. Calcium, Rb, Sn, Sb, Cs and Ba showed significant age-related variations, but their patterns were not monotonic. The liver clearly contrasts with the kidneys, in which many elements showed significant age-related variations with increasing trends. The concentration ranges of Mg, P, K, Mn, Cu, Zn, and Mo were controlled within 15% across all ages of rats. The homeostasis of the aforementioned elements may be well established in the liver. The toxic elements, such as Cd, Pb and Bi, showed a narrow concentration range among age-matched rats.  相似文献   

4.
The concentration of Mn, Fe, Zn, Cu, Cd, Cr, Ni, Ag, Mo, Nd, Al, Ce, As, Sr, Pb, Pt and Hg was analysed in water, sediments, and aquatic organisms from the San Roque Reservoir (Córdoba-Argentina), sampled during the wet and dry season, to evaluate their transfer through the food web. Stable nitrogen (δ15N) isotopes were used to investigate trophic interactions. According to this, samples were divided into three trophic groups: plankton, shrimp (Palaemonetes argentinus) and fish (Silverside, Odontesthes bonariensis). Liver and gills are the main heavy metal storage tissues in fish. Hg and As concentrations in the muscle of O. bonariensis exceed the Oral Reference doses for metals established by USEPA (2009). Trophic magnification factors (TMFs) for each element were determined from the slope of the regression between trace element concentrations and δ15N. Calculated TMFs showed fundamental differences in the trophodynamics of the studied elements during the wet and dry season in the San Roque Reservoir. Concentrations of Ni, Cd, Cr, Al, Mn, Fe, Mo, Ce, Nd, Pt and Pb during both seasons, and Sr during the dry season, showed statistically significant decreases (TMF < 1) with increasing trophic levels. Thus these elements were trophically diluted in the San Roque food chain. Conversely, Cu, Ag and As (dry season) showed no significant relationships with trophic levels. Among the elements studied, Hg in the wet season, and Zn in the dry season were the only ones showing a statistically significant increase (TMF > 1) in concentration with trophic level. Current results trigger the need for further studies to establish differential behaviour with different species within the aquatic web, particularly when evaluating the transfer of toxic elements to edible organisms, which could pose health risks to humans.  相似文献   

5.
Shed teeth have been proposed as trace element biomarkers. This study determined variations in the spatial distribution of Ca, K, Zn, Pb, Mn, Cu, and Sr in four anatomical locations: superficial enamel (SE, 0–10 μm), subsuperficial enamel (SSE, 10–30 μm), primary dentin (PD), and secondary dentin (SD). Five primary incisors were analyzed by micro Synchrotron Radiation X-Ray Fluorescence (μ-SRXRF). Two teeth had low concentrations of lead in the SE (<250 μg/g), while three contained very high lead concentrations in the SE (>2000 μg/g). Teeth were sliced, and five spot measurements (20 μm beam diameter) were accomplished in each location. The data are shown as absolute values and as the ratio between the different elements and Ca. The distribution of K was close to that of Ca. Zn was the third most abundant element, with the highest levels being found in the SE and SD and low levels detected in the PD. Increasing Sr levels were found progressing from the enamel to the dentin, with the highest levels being found in the SD, a distribution that was unique. Pb, Mn, and Cu exhibited a similar trend, with higher signals for these elements detected in the SE. This study provides preliminary data on the heterogeneous distribution of different elements in the tooth, highlighting the importance of the first 10 μm of the SE for determination of some elements, such as Zn, Pb, Mn, and Cu.  相似文献   

6.
Hemochromatosis is the most common hereditary disorder in the Nordic population, if left untreated it can result in severe parenchymal iron accumulation. Bloodletting is mainstay treatment. Iron and trace elements partially share cellular uptake and transport mechanisms, and the aim of the present study was to see if bloodletting for hemochromatosis affects trace elements homeostasis. We recruited patients referred for diagnosis and treatment of hemochromatosis, four women and 22 men 23–68 years of age. Thirteen were C282Y homozygote, one was C282Y heterozygote, three were H63D homozygote, seven were compound heterozygote and two had none of the mutations above. Iron and liver function tests were performed; serum levels of trace elements were measured using inductively coupled plasma mass spectrometry. Results before the start of treatment and after normalization of iron parameters were compared. On completion of the bloodlettings the following average serum concentrations increased: Co from 5.6 to 11.5 nmol/L, serum Cu 16.2–17.6 μmol/L, Ni increased from 50.0 to 52.6 nmol/L and Sb from 13.2 to 16.3 nmol/L. Average serum Mn concentration declined from 30.2 to 28.3 nmol/L. All changes were statistically significant (by paired t-test). B, Ba, Cs, Mo, Se, Sr and Zn were not significantly changed. We conclude that bloodlettings in hemochromatosis lead to changes in trace element metabolism, including increased absorption of potentially toxic elements.  相似文献   

7.
Biomass of Phragmites australis growing in four constructed wetlands with horizontal sub-surface flow (HF CWs) designed for treatment of municipal sewage in the Czech Republic have been analyzed for 19 trace elements. The biomass was harvested during the peak standing crop in early September and divided into stems, leaves, flowers, roots and rhizomes. Concentrations of monitored elements in both aboveground and belowground plant tissues were similar to those found in plants growing in natural stands. The highest concentrations were recorded for Al, Fe, Mn, Ba and Zn while the lowest concentrations were those of Hg, U and Cd. Concentrations decreased in the order of roots > rhizomes > leaves > stems. The root/leaf ratio averaged 70 and varied between 1.4 for molybdenum and 392 for cobalt. The belowground/aboveground concentration ratio ranged between 0.9 and 69.5 with an average value of 19. Due to average aboveground/belowground biomass ratio > 1, the belowground/aboveground standing stock ratios were lower with six elements (Ba, Zn, Se, Hg, Mo, and Mn) having this ratio < 1.  相似文献   

8.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

9.
Oral cancer is a major cause of cancer morbidity and mortality worldwide and is prevalent in most areas where tobacco related practices are observed. Essential elements play a role in many biochemical reactions as a micro-source and there is growing evidence that their concentrations are altered on the onset and progress of malignant disease. In this study the levels of copper (Cu), zinc (Zn), selenium (Se) and molybdenum (Mo) in serum of patients with oral sub mucous fibrosis (OSMF) (n = 30) and oral squamous cell carcinoma (OSCC) (n = 30); were determined and the alterations of these critical parameters were analyzed in comparison with controls (n = 30) to identify predictors amongst these parameters for disease occurrence and progression. The serum Cu and Zn were established using Flame Atomic Absorption Spectrometry. Serum estimation of Se and Mo was done by graphite furnace atomic absorption spectrometry (GFAAS). Data analysis revealed a marked, progressive and significant increase in Cu levels in precancer (OSMF) and cancer (OSCC) groups as compared to the normal group. The level of Zn in serum was slightly elevated in OSMF and OSCC though not statistically significant. Cu/Zn ratio was slightly but not significantly elevated. Serum levels of Se and Mo were significantly decreased in the precancer and cancer groups as compared to the normals.  相似文献   

10.
Due to industrial development, environmental contamination with metals increases which leads to higher human exposure via air, water and food. In order to evaluate the level of the present exposition, the concentrations of metals can be measured in such biological materials as human blood. In this study, we assessed the concentrations of cadmium (Cd), mercury (Hg) and lead (Pb) in blood samples from male blood donors from southern Poland (Europe) born in 1994 (n = 30) and between 1947 and 1955 (n = 30). Higher levels of Pb were seen in the group of older men (4.48 vs 2.48 μg/L), whereas the Hg levels were lower (1.78 vs 4.28 μg/L). Cd concentrations did not differ between age groups (0.56 μg/L). The levels of Cd and Pb in older donors were significantly correlated (Spearman R 0.5135). We also observed a positive correlation between the number of red blood cells (RBC) and Hg concentrations in the older group (Spearman R 0.4271). Additionally, we noted numerous correlations among morphological parameters. Based on our results, we can state that metals influence the blood morphology and their concentrations in blood vary among age groups.  相似文献   

11.
Selenium, copper and zinc status is important in pregnant women. The aim of this study was to establish updated normal ranges for these elements in serum of pregnant women from the Spanish region of Aragon, and to study variation in levels with respect to gestational period and maternal age. The study group consisted of 159 pregnant women who did not suffer from serious pathologies. These samples were classified into four gestational-period groups. Zn and Cu determinations were obtained by flame atomic absorption spectroscopy in a Perkin-Elmer 1100B apparatus, and Se was determined by electrothermal atomic absorption spectrometry with Zeeman correction, in a Perkin-Elmer 4110 ZL apparatus. The concentrations of Cu, Zn and Se averaged 73.61±43.67 μg/dL, 65.37±12.87 μg/dL and 99.59±21.74 μg/L, respectively. The Cu/Zn ratio increased from first trimester to the third trimester (2.07–3.49). There was no significant correlation between Zn and Se levels, but a significant correlation was found between Cu and Se levels (p<0.05) and between Cu and Zn levels (p<0.001). Serum Zn and Se levels decreased over gestation, while serum Cu concentrations increased; in all cases the variation occurred mostly in the first 3 or 4 months, with mean levels then remaining fairly stable until the end of pregnancy. Maternal age did not influence levels of any of the three metals.  相似文献   

12.
Studies show that decreased antioxidant system is related to cognitive decline. Thus we aimed to measure selenium (Se) status in Alzheimer's disease (AD) and mild cognitive impairment (MCI) elderly and compared them with a control group (CG). 27 AD, 17 MCI and 28 control elderly were evaluated. Se concentration was determined in plasma and erythrocyte by using hydride generation atomic absorption spectroscopy. Erythrocyte Se concentration in AD group was lower than CG (43.73 ± 23.02 μg/L and 79.15 ± 46.37 μg/L; p = 0.001), but not statistically different from MCI group (63.97 ± 18.26 μg/L; p = 0.156). AD group exhibited the lowest plasma Se level (34.49 ± 19.94 μg/L) when compared to MCI (61.36 ± 16.08 μg/L; p = 0.000) and to CG (50.99 ± 21.06 μg/L; p = 0.010). It is observed that erythrocyte Se decreases as cognition function does. Since erythrocyte reflects longer-term nutritional status, the data point to the importance of the relation between Se exposure and cognitive function. Our findings suggest that the deficiency of Se may contribute to cognitive decline among aging people.  相似文献   

13.
Geographical variations in element composition of bee products are poorly investigated though a lot of attempts are made to utilize the data in ecological monitoring. So the comparison of chemical element composition of bee and beekeeping products in different taxons of the biosphere may become valuable to test the efficiency of such approach. For this purpose content of 25 elements in bee body, bee bread, propolis and honey from Ribnitsa district of Moldavia (unpolluted area, control), Henty province of Mongolia (selenium deficient area) and Voskresensk district of Moscow region (mineral fertilizers production) were determined by means of the ICP-MS. Among 3 investigated regions Mongolia was characterized by the lowest Se levels and the highest accumulation of Al, Ca, Cd, Cu, Co, K, Mn, Mg, Na, Ni, P, Zn and V in bee bodies. The highest levels of Pb, Cr, Fe, Si, Sr and B, Se, Li, Sn were typical for Voskresensk and Moldavia bees accordingly. The highest correlation coefficients were registered between element concentrations in bee body and bee bread (r = +0.97–0.99, P < 0.0001), less significant – in bee body and propolis (r = +0.5–0.7; P < 0.001) and no correlation was demonstrated between element composition of bee body and honey. Propolis was characterized by significantly higher capacity to accumulate Pb, Cr, Sn and Al than bee body. Compared to bee body honey accumulated the lowest level of Mn and the highest of Si in Se-deficient Mongolia but the opposite phenomenon was demonstrated in Moldavia with moderately increased Se content in the environment. The results suppose that the most promising object for ecological monitoring is bee body. Element composition of propolis seems to reflect prolonged accumulation of elements, especially Pb, Al, Sn and Cr, by plant resin rather than dynamic temporal elements loading. Accumulation levels of elements in bee bread may be used on a par with bee body mineral content only in cases with equal honey content in bee bread. Honey utilization in monitoring of geochemical elements loading should be used with caution due to peculiarities of pollen/nectar elements distribution.  相似文献   

14.
The aim of this study was to assess the bioavailability of selenium (Se) in Se-enriched yeast and the possible impact of age, sex and area of residence on the Se concentration in plasma in 179 transplant recipients, as Se clinical effects in the prevention of cutaneous epithelial lesions in organ transplant recipients has been reported elsewhere. Subjects were randomized to receive either 200 μg Se/day (group 1:91 patients) or placebo (group 2: 88 patients) for 3 years. Plasma Se levels were measured at the beginning of the study and after 4, 12, 24 and 36 months of Se or placebo supplementation. Initial plasma Se levels were 90.9±26.1 μg/L for placebo and 94.0±25.3 μg/L for Se-supplemented groups. At baseline, the Se level was not linked to sex and age but to area of residence, although the number of subjects in each area was insufficient to draw any conclusions. Plasma Se levels were statistically lower in cases of liver transplant compared to kidney and heart transplant (p=0.03). Over the 3-year period of supplementation, plasma Se in the supplemented subjects was significantly higher than in the placebo group (p<0.01) and there was an interaction (p<0.01) between supplementation and time for plasma Se. Supplementation with Se-enriched yeast significantly increased the Se concentration in plasma of the patients to a plateau: the mean plasma Se of the Se-supplemented patients increased to 164.7±35.8 μg/L at 4 months and then remained similar at 12 (176.1±48.3 μg/L), 24 (176.1±54.2 μg/L) and 36 (182.2±46.4 μg/L) months.  相似文献   

15.
A series of heavy metal complexes of crosslinked chitosans were evaluated by thermogravimetric studies. The metal complexes with Cu, Cd and Hg ions exhibiting the highest complexing ability to chitosans (Hg 354–364, Cu 100–112, and Cd 121–160, in mg/g chitosan), had the lowest onset of degradation temperatures (range 194–210 °C) and the lowest final degradation temperatures (generally less than 294–304 °C for Hg, 296–338 °C for Cu, and 305–368 °C for Cd complexes). Mn ion, with the lowest binding to chitosans (Mn 5–7 mg/g), showed the reverse behavior, having onset (240–248 °C) and final degradation temperatures (range 300–368 °C). Zn (binding 74–87 mg/g) and Pb (binding 39–62 mg/g) ions have a binding ability intermediate to Cu/Cd/Hg and Mn extremes, and therefore the effects on onset and final degradation temperatures are intermediate to these values.  相似文献   

16.
Dyslipidemia in patients with glycogen storage disease types Ia (GSD Ia) and III (GSD III) does not lead to premature atherosclerosis. The aim of this study was to investigate the association among serum copper (Cu), zinc (Zn), iron (Fe), and selenium (Se) concentrations, and their carrier proteins: ceruloplasmin, albumin, and related antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), and arylesterase (ARYL)] in 20 GSD Ia and 14 III patients compared to age and sex matched 20 healthy subjects. Erythrocyte oxidative stress was measured by erythrocyte thiobarbituric acid reactive substances (eTBARSs). Hypertriglyceridemia [333 (36–890) mg/dL] in GSD Ia and hypercholesterolemia with elevated LDL-cholesterol [188 (91–313) mg/dL] and decreased HDL-cholesterol [32(23–58) mg/dL] levels in GSD III were found. Serum Cu, Fe, and Zn showed no significant differences between groups. However, Se 60 (54–94), 81 (57–127) μg/L, ceruloplasmin 21 (10–90), 27 (23–65) μg/L, and albumin 2.4 (1.7–5.1), 2.8 (1.8–4.06) g/dL levels were decreased in GSD Ia and III groups, respectively, in comparison with the controls [Se 110 (60–136) μg/L, ceruloplasmin 72 (32–94) μg/L, and albumin 4.4 (4–4.8) g/dL)]. In spite of high oxidative stress in erythrocyte detected by elevated eTBARS/Hb levels in GSD group [674.8 (454.6–948.2) for GSD Ia, 636.3 (460.9–842.1) for GSD III, and 525.6 (449.2–612.6)], the activities of CAT, SOD, ARYL, and PON in GSD patients were not different from the controls. GPx activity was decreased in GSD Ia [3.7 (1.8–7.1) U/mL] and GSD III [4.2 (2.2–8.6) U/mL] compared with healthy controls [7.1 (2.9–16.2) U/mL].In conclusion, this study supplied the data for trace elements, their carrier, and antioxidative enzymes in the patients with GSD Ia and III. The trace elements and anti-oxidative enzyme levels in GSD patients failed to explain the atherosclerotic escape phenomenon reported in these patients.  相似文献   

17.
In fishes, arsenic (As) is absorbed via the gills and is capable of causing disturbance to the antioxidant system. The objective of present study was to evaluate antioxidant responses after As exposure in gills of zebrafish (Danio rerio, Cyprinidae). Fish were exposed for 48 h to three concentration of As, including the highest As concentration allowed by current Brazilian legislation (10 μg As/L). A control group was exposed to tap water (pH 8.0; 26 °C; 7.20 mg O2/L). As exposure resulted in (1) an increase (p < 0.05) of glutathione (GSH) levels after exposure to 10 and 100 μg As/L, (2) an increase of the glutamate cysteine ligase (GCL) activity in the same concentrations (p < 0.05), (3) no significant differences in terms of glutathione reductase, glutathione-S-transferase and catalase activities; (4) a significantly lower (p < 0.05) oxygen consumption after exposure to 100 μg As/L; (4) no differences in terms of oxygen reactive species generation and lipid peroxidation content (p > 0,05). In the gills, only inorganic As was detected. Overall, it can be concluded that As affected the antioxidant responses increasing GCL activity and GSH levels, even at concentration considered safe by Brazilian legislation.  相似文献   

18.
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.  相似文献   

19.
Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer for synthetic polymers, is known to have endocrine disruptive potential, reproductive toxicity, and induces hepatic carcinogenesis in rodents. Selenium (Se) is a component of several selenoenzymes which are essential for cellular antioxidant defense and for the functions of mammalian reproductive system. The present study was designed to investigate the effects of DEHP exposure on trace element distribution in liver, testis, and kidney tissues and plasma of Se-deficient and Se-supplemented rats. Se deficiency was produced by feeding 3-week old Sprague-Dawley rats with ≤0.05 mg Se/kg diet for 5 weeks, and supplementation group were on 1 mg Se/kg diet. DEHP treated groups received 1000 mg/kg dose by gavage during the last 10 days of feeding period. Se, zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Se supplementation caused significant increases in hepatic, renal, and testicular Se levels. With DEHP exposure, plasma Se and Zn, kidney Se, Cu and Mn levels were significantly decreased. Besides, liver Fe decreased markedly in all the DEHP-treated groups. Liver and kidney Mn levels decreased significantly in DEHP/SeD group compared to both DEHP and SeD groups. These results showed the potential of DEHP exposure and/or different Se status to modify the distribution pattern of essential trace elements in various tissues, the importance of which needs to be further evaluated.  相似文献   

20.
Iron status was studied in 137 welders exposed to a geometric mean (GM) air concentration of 214 μg/m3 (range 1–3230) of manganese (Mn), in 137 referents and in 34 former welders. The GM concentrations of S-ferritin were 119 (3–1498), 112 (9–1277) and 98 (12–989) μg/L (p = 0.24) in the three groups, respectively. Also the GM concentrations of S-hepcidin were not significantly different between the groups (8.4 μg/L (2.8–117); 6.6 μg/L (1.8–100); 6.5 μg/L (1.2–22)) (p = 0.22). Multiple linear regression analysis including all welders and referents showed an increase in the concentration of S-ferritin associated with having serum carbohydrate deficient transferrin (S-CDT) above the upper reference limit of ≥1.7%, indicating high alcohol consumption. Serum C-reactive protein was not associated with exposure as welders, but an association with S-ferritin was shown. The GM S-ferritin concentrations among all welders and referents with S-CDT  1.7% were 157 μg/L (95% CI 113–218) as compared to 104 μg/L (95% CI 94–116) (p = 0.02) in those with S-CDT < 1.7%. The GM concentrations of Mn in biological fluids were higher in the welders as compared to the referents, while S-Fe, S-Co and B-Co were statistically significantly lower. This could suggest a competitive inhibition from Mn on the uptake of Fe and Co. Increasing concentrations of S-CDT was associated with higher S-Mn, S-Fe and B-Co in the multiple linear regression analysis. The association between S-CDT and S-Fe remained when all subjects with high S-CDT (≥1.7%) were excluded, suggesting increased uptake of Fe even at lower alcohol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号