首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
该研究根据已克隆的华南象草(Pennisetum purpureum cv.Huanan)肉桂醇脱氢酶(CAD)基因PpCAD的cDNA序列,构建亚细胞定位载体pAN580-PpCAD,用PEG介导法转化象草原生质体,以探究PpCAD蛋白在细胞内的定位;同时构建植物过表达载体pBA002-PpCAD,通过农杆菌介导法在烟草中异源表达,以研究PpCAD基因与植物木质素合成的关系。结果显示:(1)PpCAD定位在象草原生质体的细胞质内;(2)过表达载体pBA002-PpCAD转化烟草后获得27株转基因烟草,其中25株PCR鉴定为阳性;(3)半定量RT-PCR检测6株转基因烟草后发现,PpCAD基因在不同植株的表达量存在差异,通过Southern杂交检测后发现该差异与目的基因插入的拷贝数有关;(4)6株转基因烟草和野生型烟草表型上没有明显差异,除目的基因多拷贝插入的植株OEC6外,木质素含量有不同程度的提高,最高比野生型提高了56.50%。研究表明,PpCAD是一个细胞质蛋白,在烟草中过表达PpCAD能够提高植株木质素含量,表明PpCAD基因参与了植物的木质素合成,可用于象草的木质素调控研究。  相似文献   

2.
We have previously reported the molecular characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) of Bromus pictus, a graminean species from Patagonia, tolerant to cold and drought. Here, this enzyme was functionally characterized by heterologous expression in Pichia pastoris and Nicotiana tabacum. Recombinant P. pastoris Bp6-SFT showed comparable characteristics to barley 6-SFT and an evident fructosyltransferase activity synthesizing bifurcose from sucrose and 1-kestotriose. Transgenic tobacco plants expressing Bp6-SFT, showed fructosyltransferase activity and fructan accumulation in leaves. Bp6-SFT plants exposed to freezing conditions showed a significantly lower electrolyte leakage in leaves compared to control plants, indicating less membrane damage. Concomitantly these transgenic plants resumed growth more rapidly than control ones. These results indicate that Bp6-SFT transgenic tobacco plants that accumulate fructan showed enhanced freezing tolerance compared to control plants.  相似文献   

3.
Tobacco plants, transformed with a maize sucrose phosphate synthase (SPS) cDNA clone, had threefold increased SPS activity compared to wild‐type tobacco. Measurement of SPS maximal activity and protein abundance using specific antibodies to the maize protein showed that the specific activity of the maize SPS protein was maintained when expressed in tobacco. Comparison of the kinetic properties of SPS in the transgenic lines compared to either wild‐type maize or tobacco revealed that the heterologously expressed protein had reduced affinity for both substrates (fructose‐6‐phosphate and UDP‐glucose) and reduced sensitivity to allosteric inhibition by inorganic phosphate. Moreover, the extent of light‐induced activation was reduced in the transgenic lines, with smaller changes observed in the Km for both F6P compared to maize and tobacco wild‐type plants. Increased sucrose concentrations were observed in the transgenic lines at the end of the photoperiod and this was linearly related to SPS activity and associated with a parallel decrease in starch content. This suggests that SPS is a major control point for carbohydrate partitioning between starch and sucrose during photosynthesis.  相似文献   

4.
Fructans can act as cryoprotectants and contribute to freezing tolerance in plant species, such as in members of the grass subfamily Pooideae that includes Triticeae species and forage grasses. To elucidate the relationship of freezing tolerance, carbohydrate composition and degree of polymerization (DP) of fructans, we generated transgenic plants in the model grass species Brachypodium distachyon that expressed cDNAs for sucrose:fructan 6-fructosyltransferases (6-SFTs) with different enzymatic properties: one cDNA encoded PpFT1 from timothy grass (Phleum pratense), an enzyme that produces high-DP levans; a second cDNA encoded wft1 from wheat (Triticum aestivum), an enzyme that produces low-DP levans. Transgenic lines expressing PpFT1 and wft1 showed retarded growth; this effect was particularly notable in the PpFT1 transgenic lines. When grown at 22 °C, both types of transgenic line showed little or no accumulation of fructans. However, after a cold treatment, wft1 transgenic plants accumulated fructans with DP = 3–40, whereas PpFT1 transgenic plants accumulated fructans with higher DPs (20 to the separation limit). The different compositions of the accumulated fructans in the two types of transgenic line were correlated with the differences in the enzymatic properties of the overexpressed 6-SFTs. Transgenic lines expressing PpFT1 accumulated greater amounts of mono- and disaccharides than wild type and wft1 expressing lines. Examination of leaf blades showed that after cold acclimation, PpFT1 overexpression increased tolerance to freezing; by contrast, the freezing tolerance of the wft1 expressing lines was the same as that of wild type plants. These results provide new insights into the relationship of the composition of water-soluble carbohydrates and the DP of fructans to freezing tolerance in plants.  相似文献   

5.
Andrea Polle 《Planta》1996,198(2):253-262
It is generally believed that a restricted export of carbohydrates from source leaves causes oxidative stress because of an enhanced utilisation of O2 instead of NADP+ as electron acceptor in photosynthesis. To test this hypothesis, developmental changes of antioxidative systems were investigated in wild-type and transgenic tobacco (Nicotiana tabacum L.) suffering from disturbed sink-source relations by expression of yeast invertase in the apoplastic space. Young expanding leaves of the wild type contained higher activities of Superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), glutathione reductase (EC 1.6.4.2) and a higher glutathione content than mature source leaves. The activity of monodehydroascorbate-radical reductase (EC 1.1.5.4) and the ascorbate content remained unaffected by the developmental stage in the wild type. In young expanding leaves of the transgenic plants the capacity of the antioxidative systems was similar to or higher than in corresponding leaves from the wild type. Source leaves of transgenic tobacco with an increased carbohydrate content showed a small chlorophyll loss, an increased malondialdehyde content, a selective loss of the activities of Cu/Zn-superoxide dismutase isoenzymes and a fourfold decrease in ascorbate compared with the wild type. There was no evidence that the protection from H2O2 was insufficient since source leaves of transgenic tobacco contained increased activities of catalase, ascorbate peroxidase, and monodehydroascorbate-radical reductase and an increased ascorbate-to-dehydroascorbate ratio compared with source leaves of the wild type. In severely chlorotic leaf sections of the transgenic plants, most components of the antioxidative system were lower than in green leaf sections, but the ascorbate-to-dehydroascorbate ratio was increased. These results suggest that carbohydrate-accumulating cells have an increased availability of reductant, which can increase the degree of reduction of the ascorbate system via glutathione-related systems or via the activity of monodehydroascorbate-radical reductase. At the same time, transgenic tobacco leaves seem to suffer from an increased oxidative stress, presumably as a result of a decreased consumption of O 2 .- by Cu/Zn-superoxide dismutases in the chloroplasts. There was no evidence that carbohydrate-accumulating leaves acclimated to enhanced O 2 .- production rates in the chloroplasts.  相似文献   

6.
7.
To investigate the effects of sucrose-phosphate synthase (SPS) on carbon partitioning, transgenicArabidopsis plants transformed withSynechocystis SPS were constructed. The integration, copy number and expression level were confirmed by Southern and Northern blot analyses. SPS activity in leaves from the transgenic and wild type plants was not significantly different. The level of sucrose and starch in the leaves of transgenic plant were slightly decreased compared to wild type. The glucose and fructose contents were increased up to two-fold compared to wild type during the light period. It is our speculation that the decreased sucrose level of the transgenic plant might be caused by the high acid invertase. These authors contributed equally to this work  相似文献   

8.
9.
该研究以转彩色马铃薯StAN1基因烟草为材料、野生型烟草(WT)为对照,测定分析转StAN1基因烟草在种子萌发期、幼苗期和苗期对干旱(甘露醇)处理的耐受情况,并对苗期旱热共同胁迫的耐受情况进行测定分析,以探讨彩色马铃薯StAN1基因的功能,为耐旱彩色马铃薯育种提供新路径。结果显示:(1)转StAN1基因烟草鉴定显示,阳性率为82.6%,且转基因烟草的叶片明显变紫,花青素含量极显著高于野生型烟草。(2)在培养基甘露醇浓度为150 mmol/L时,点播在培养基上的转基因烟草种子第5天时的萌发率达到了7%,是野生型烟草萌发率的2.3倍。(3)在甘露醇浓度为0和100 mmol/L的培养基上竖直培养时,转基因烟草的根长分别是野生型烟草的1.46和1.30倍,根长比野生型烟草显著增长。(4)在干旱胁迫下,转基因烟草幼苗叶片中的脯氨酸含量以及超氧化物歧化酶活性均显著高于野生型烟草,丙二醛含量均显著低于野生型烟草。(5)转基因烟草LEA基因和ERF基因在干旱和旱热处理中的相对表达量均高于野生型烟草。研究表明,StAN1基因在提高植物花青素含量的同时也提高了植物的耐旱性。  相似文献   

10.
Fructan (polyfructosylsucrose) is an important storage carbohydrate in many plant families. fructan:fructan 6G-fructosyltransferase (6G-FFT) is a key enzyme in the formation of the inulin neoseries, a type of fructan accumulated by members of the Liliales. We have cloned the 6G-FFT from onion by screening a cDNA library using barley sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. The deduced amino acid sequence showed a high homology with plant invertases and 6-SFT. Incubation of protein extracts from transgenic tobacco plants with the trisaccharide 1-kestose and sucrose resulted in the formation of neokestose and fructans of the inulin neoseries with a degree of polymerization up to six. Introduction of the onion 6G-FFT into chicory resulted in the synthesis of fructan of the inulin neoseries, in addition to the synthesis of linear inulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号