首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultrastructural study has been made of the life cycle of the cellular slime mold Dictyostelium minutum. The development of D. minutum is rather simple if compared with Dictyostelium discoideum. After 2 hr of starvation, amoebas move in a nonpulsatile manner towards an acrasin-secreting founder cell. The chemotactic signal is not relayed by the amoebas and stream formation toward primary aggregation centers does not occur. Usually, more than one fruiting body arises from one pseudoplasmodium. No migration of the pseudoplasmodium takes place. The first signs of spore differentiation are found in late aggregates, where prespore cells can be distinguished from the surrounding undifferentiated cells by the increased electron density of their cytoplasm. Vacuoles comparable with the prespore vacuole of D. discoideum appear in both cell types; they fuse with the plasma membrane during sporulation of electron-dense cells and are lysed in electron-light cells, which eventually form the stalk. In contrast with D. discoideum no spatial separation between prespore and prestalk cells is found until very late in fruiting body development.  相似文献   

2.
When cells dissociated from Dictyostelium discoideum slugs were cultured in roller tubes, they formed agglomerates in which prestalk cells were initially dispersed but soon sorted out to the center and then moved to the edge to reconstitute the prestalk/prespore pattern. To examine the mechanism of sorting out, individual prestalk cells were traced by a videotape recorder. The radial component of the rate of movement toward the center of the presumptive prestalk region was calculated. Prestalk cells did not move randomly, but rather directionally toward the center. Their movement was pulsatile, with a period of ca. 15 min, and accompanied by occasional formation of cell streams, thus resembling the movement observable during cell aggregation. These results favor the idea that prestalk cells sort out to the prestalk region due to differential chemotaxis rather than differential adhesiveness. After formation of the prestalk/prespore pattern, the prestalk region rotated along the circumference of the agglomerates. This appears comparable to migration of slugs on the substratum, the rate of rotation being similar to that of slug migration. To examine the processes of pattern formation during development, washed vegetative cells were cultured in roller tubes. Prespore cells identified by antispore immunoglobulin initially appeared randomly within the agglomerates, but then nonprespore cells accumulated in the center and finally moved to the edge to establish the prestalk/prespore pattern, the processes being similar to those of pattern reconstruction with differentiated prestalk and prespore cells.  相似文献   

3.
A high calcium concentration is known to induce stalk differentiation of the cellular slime mold D. discoideum. Therefore, the change in the calcium content of this organism during differentiation was studied and found to vary during development, more calcium being found in the anterior prestalk cells of the pseudoplasmodium (slug) than in the posterior prespore cells. It is concluded from the results that calcium is of importance in the cell differentiation of this organism and particularly in stalk formation.  相似文献   

4.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

5.
Six monoclonal antibodies were isolated which react with common antigens shared by multiple glycoconjugate species in the cellular slime mold Dictyostelium discoideum. Based on competition of antibody binding by glycopeptides and simple sugars, and inhibition of antibody binding by antigen pretreatment with Na periodate, it is argued that at least five of the six antibodies recognize epitopes which contain carbohydrate. These epitopes are consequently referred to as glycoantigens (GAs).Three of the GAs are expressed during growth and throughout the developmental cycle, but are eventually enriched in prestalk and stalk cells. The remaining three are expressed only during and/or after aggregation and are exclusively expressed or highly enriched in prespore cells and spores. These conclusions are derived from Western blot immunoanalysis of purified cell types, immunofluorescence, and EM immunocytochemistry.The two GAs found only in prespore cells appear to be exclusively enclosed within prespore vesicles. The third GA of this type, which is only enriched in prespore cells compared to prestalk cells, is also found in other vesicle types as well as on the cell surface.Two of the GAs enriched in prestalk cells are initially found in all cells of the slug. They are undetectable in spores and prominent in stalk cells. The third GA, though found in the interiors of both prestalk and prespore cells, is enriched on the cell surface of prestalk cells.The chief characteristics of expression of four of these GAs are conserved in the related species D. mucoroides. This species is characterized by continuous trans differentiation of prespore cells into prestalk cells. This shows that the prespore cells maintain specific mechanisms for turning over their cell type specific GAs and that prestalk cells express a specific mechanism for inducing at least one of their cell-type specific GAs.These observations identify specific carbohydrate structures (as GAs) whose synthesis, subsequent localization and turnover are developmentally regulated. The exclusive association of two GAs with prespore vesicles identifies these GAs as markers for this organelle and raises questions regarding the functional significance of this association. The restricted cell surface localization of the other four GAs, together with data from cell adhesion studies, suggest the possibility of a potential role for these GAs in intercellular recognition leading to cell sorting.This paper is dedicated to the memory of the late Daniel McMahon.  相似文献   

6.
A study of the incorporation of l-[6-3H]fucose and d-[6-3H]glucosamine hydrochloride was conducted during the development of the cellular slime mold Dictyostelium discoideum 1-H. Autoradiographs revealed that pulse-labeled vegetative amoebae incorporated [3H]fucose intracytoplasmically within 15 min. The majority of the cells had randomly scattered silver grains but the remainder were distinguished by a dense localized labeling which suggested that oligo or polysaccharide synthesis was occurring. The localized pattern of labeling attributed to active synthesis declines at aggregation and early conus formation. As the pseudoplasmodium makes the developmental transition from the conus to the culmination stages the localized pattern of [3H]fucose labeling was restricted to the prespore cells while the prestalk cells were devoid of label. Prespore vacuoles were not present at the onset of this transition and consequently [3H]fucose incorporation occurred in the cells prior to their differentiation into prespore cells. In contrast to cells composing earlier stages, mature spores exhibited [3H]fucose-containing substances at the cell surface. At appropriate stages certain cells actively synthesize slime and stalk sheath which were labeled with either [3H]fucose or [3H]glucosamine.Prestalk isolates were obtained by transecting migrating slugs. [3H]Fucose was incorporated within 10 min among the basal cells of the isolate in the localized pattern typically found in prespore cells. The incorporation of [3H]fucose occurred prior to prespore differentiation as certain preparations were devoid of prespore vacuoles. Prespore isolates differentiate prestalk cells which have lost the capacity to incorporate [3H]fucose. This investigation suggests that cell contacts and interactions may affect the incorporation of [3H]fucose.  相似文献   

7.
The stalk cell differentiation inducing factor (DIF) has the properties required of a morphogen responsible for pattern regulation during the pseudoplasmodial stage of Dictyostelium development. It induces prestalk cell formation and inhibits prespore cell formation, but there is as yet no strong evidence for a morphogenetic gradient of DIF. We have measured DIF accumulation by monolayers of isolated prestalk and prespore cells in an attempt to provide evidence for such a gradient. DIF is accumulated in the largest quantities by a subpopulation of prestalk cells that specifically express the DIF-inducible genes pDd56 and pDd26. Since it has been shown recently that cells that express pDd56 are localized in the central core of the prestalk cell region of the pseudoplasmodia, our current results suggest a morphogenetic gradient generated by this region.  相似文献   

8.
Abstract The difference in membrane potentials between prestalk cells and prespore cells has been examined with reference to the formation of cellular pattern in the pseudoplasmodium (slug) of D. discoideum . Each cell at a different concentration of cAMP had a characteristic membrane potential. In addition, differences in and reversal of membrane potentials occurred between the two types of cell. The results indicate that the changes in membrane potential in both types of cell are closely correlated with the changes in chemotactic movement in response to cAMP.  相似文献   

9.
Abstract. We propose that the prestalk/prespore pattern in Dictyostelium is generated in two steps: In a first process, an intermingled, non-position dependent prestalk/prespore pattern is generated by a cell-restricted autocatalysis and the antagonistic action of a long-ranging substrate which becomes depleted during this autocatalysis. By computer simulations we show that the assumed interaction accounts for several experimentally observed features of the prestalk/ prespore pattern: The size-independent ratio of both cell types, the pattern regulation after removal of one cell type, the development towards one or the other pathway before the slug obtains its final shape or even before aggregation is completed. Our hypothetical substrate may be identical with an experimentally found differentiation-inducing factor (DIF). Alternative molecular realizations of the basic mechanism are discussed. A second process leads to the aggregation of the prestalk cells in a particular region of the aggregate, the future tip region. Interactions which en-able tip formation and the coupling between the prestalk/prespore and the tip-forming system are discussed. Our model shows that the formation of a single large patch of differentiated cells and its size regulation requires conflicting parameters. By a separation into a mechanism which determines the position and a second one which determines the size of a structure, each mechanism can be optimized individually without requiring compromises for the other. Such a separation also seems to occur in other developmental systems.  相似文献   

10.
At least three distinct types of cell arise from a population of similar amoebae during Dictyostelium development: prespore, prestalk A and prestalk B cells. We report evidence suggesting that this cellular diversification can be brought about by the combinatorial action of two diffusible signals, cAMP and DIF-1. Cells at different stages of normal development were transferred to shaken suspension, challenged with various combinations of signal molecules and the expression of cell-type-specific mRNA markers measured 1-2 h later. pDd63, pDd56 and D19 mRNAs were used for prestalk A, prestalk B and prespore cells respectively. We find the following results. (1) Cells first become responsive to DIF-1 for prestalk A differentiation and to cAMP for prespore differentiation at the end of aggregation, about 2 h before these cell types normally appear. (2) At the first finger stage of development, when the rate of accumulation of the markers is maximal, the expression of each is favoured by a unique combination of effectors: prespore differentiation is stimulated by cAMP and inhibited by DIF-1; prestalk A differentiation is stimulated by both cAMP and DIF-1 and prestalk B differentiation is stimulated by DIF-1 and inhibited by cAMP. (3) Half-maximal effects are produced by 10-70 nM DIF-1, which is in the physiological range. (4) Ammonia and adenosine, which can affect cell differentiation in other circumstances, have no significant pathway-specific effect in our conditions. These results suggest that cell differentiation could be brought about in normal development by the localized action of cAMP and DIF-1.  相似文献   

11.
Although positional information, conveyed by morphogen gradients, is a widely accepted way of forming patterns during development, an alternative method is conceivable, based on the intermingled differentiation of cells with different fates, followed by their sorting into discrete pattern elements. It has been proposed that Dictyostelium prestalk and prespore cells behave in this way at the mound stage of development. However, it has been difficult to conclusively demonstrate that they initially differentiate intermingled, because rapid cell movement within the mound makes it impossible to be sure where prestalk and prespore cells originate. We have taken a novel approach to address this problem by blocking cell movement at different stages in development, using the actin-depolymerizing drug, latrunculin-A. Prestalk and prespore cells differentiate with essentially normal efficiency and timing in such paralyzed structures. When movement is blocked sufficiently early, the major cell types all subsequently differentiate at scattered positions throughout the aggregate, and even in the streams leading into it. Our work strongly supports the idea that the prestalk/prespore pattern in Dictyostelium forms without positional information and demonstrate that latrunculin-A may provide a useful tool for the investigation of patterning in other organisms.  相似文献   

12.
A number of genes encoding developmentally regulated mRNAs in the cellular slime mold, Dictyostelium discoideum, have been described. Many of these are regulated by cAMP. Analysis of the earliest time at which elevated levels of cAMP can induce the expression of these mRNAs reveals a more complex pattern of regulation in which genes change in their ability to be induced in response to cAMP with developmental stage. A prestalk mRNA (C1/D11) previously thought not be regulated by elevated levels of cAMP is inducible by cAMP between aggregation and loose mound stage; later in development its expression becomes independent of elevated cAMP. The early prespore genes (prespore class I) also show two modes of regulation; early in development they are induced independently of continuous elevated levels of cAMP, while later in development their expression is dependent upon elevated cAMP. The period during development when the prestalk genes are cAMP inducible precedes by 2 hr the first time at which either the early prespore class I or late prespore class II mRNAs are inducible by continuous elevated levels of cAMP. Previous analysis of these mRNAs has been carried out using Dictyostelium cells grown axenically. In this report we have studied the developmental expression of these mRNAs in cells grown on bacteria. A substantial shutoff of the class I prestalk and early prespore (class I) mRNAs not seen in axenically grown cells is observed when bacterially grown cells are plated for development. Less than 10% of the maximal level of these mRNAs remains in the cells at the time of mature spore and stalk differentiation. Additionally, in the bacterially grown cells two distinct patterns of developmental regulation are observed for mRNAs which in axenically growing cells appear to be constitutively expressed throughout growth and development.  相似文献   

13.
Upon starvation, Dictyostelium amoebae aggregate together and then differentiate into either the stalk or spore cells that, respectively, form the stalk and sorus of the fruiting body. During differentiation, the prestalk and prespore cells become spatially segregated in a clearly defined developmental pattern. Several low molecular weight molecules that influence cell type determination during in vitro differentiation have been identified. The possible role of these molecules as morphogens, responsible for the formation of the developmental pattern, is discussed.  相似文献   

14.
Abstract. The effects of migration and culmination on patterning of presumptive (prespore and prestalk) cells and mature (spore and stalk) cells of D. discoideum were investigated. The ratio of prespore to total cells, as determined by staining with fluorescein-conjugated antispore globulin, was constant (77%) up until 8 h of slug migration, but then decreased to a level (64%) which thereafter remained unchanged during migration. Cells which lost prespore antigen during migration were located in the posterior (prespore) part next to the agar surface.
Upon induction of culmination, however, the ratio of prespore cells quickly increased to the normal level (77%) within 1–2 h. During the transition between migration and culmination prestalk and prespore cells were considerably intermixed within the cell mass, before the normal prestalk-prespore pattern was reestablished at the preculmination (Mexican hat) stage. Spore: stalk ratios within fruiting bodies were normal irrespective of the lengths of slug migration.  相似文献   

15.
Origins of the prestalk-prespore pattern in Dictyostelium development   总被引:21,自引:0,他引:21  
Using cell-autonomous markers we have traced the origins of prespore cells and two types of prestalk cells (pstA and pstB cells) during slug formation. We show that cell sorting and positional information both contribute to Dictyostelium morphogenesis. The initial pattern established at the mound stage is topologically quite different from that of the slug. Confirming previous studies, we find that prespore cells occupy most of the aggregate but are absent from a thin layer at the base and from the emerging tip. PstB cells are almost entirely localized to the basal region during the early stages of tip formation. Thus prespore and pstB cell differentiation appear to occur in response to localized morphogenetic signals. In the case of pstB cells, these signals presumably emanate from the base and not, as might be expected, from the tip. When first detectable, pstA cells are scattered throughout the aggregate. They then appear to migrate to the apex, where the tip forms.  相似文献   

16.
Taking advantage of the fact that differentiation of the prespore cell of Dictyostelium discoideum is characterized by synthesis of a prespore specific antigen, the process of its differentiation during the course of morphogenesis was quantitatively studied by determining the proportion of prespore cells and their cellular contents of the antigen, using the method of microfluorometry in combination with immunocytochemistry with antispore serum. The cells synthesizing the antigen became first detectable in the early aggregation center which was about to form a papilla. As the papilla elongated, the number of prespore cells rapidly increased up to the stationary level (70–80% of total cells) before completion of slug formation. During the process antigenic contents of prespore cells were gradually increased and leveled off in the early migration stage. When culmination was induced, antigenic contents were markedly increased to the maximum, which was followed by a sudden decrease immediately before spore formation. On the other hand, the proportions of prespore to total cells were kept constant at the stationary level all through the migration and culmination stages, in spite of a persistent decrease during culmination in the total number of cells due to continuous differentiation of the prestalk into the mature stalk cells. These results were discussed in relation to possible mechanisms of differentiation in this organism.  相似文献   

17.
The ultra-structure of the nucleolus in Dictyostelium discoideum cells was studied by electron microscopy. Large nucleoli on the periphery of the nucleus in cells of the multi-cellular pseudoplasmodium (slug) were maintained during long migration. Disaggregation of the slug cells induced a reduction in the size of the large nucleoli. The size of the reduced nucleoli in the reaggregated cells were maintained during the long migration and culmination of reconstructed slug. The electron density of the cytoplasm clearly distinguishes the prespore from the prestalk region, and it takes about 6 h for the complete recovery of cell-to-cell contact after reaggregation.  相似文献   

18.
In the slug of the cellular slime mold, Dictyostelium discoideum , are differentiated the anterior prestalk cells and the posterior prespore cells, whose differentiation is characterized by formation of the prespore specific vacuole (PSV). The ultrastructural changes of the PSV were investigated during dedifferentiation of a prespore cell disaggregated from a slug and also during conversion of the cell type, caused by fragmentation of a slug, between the prespore and the prestalk cells.
During the dedifferentiation, the PSV first lost its lining membrane which subsequently congregated, together with the inner filamentous material, to form some electron dense granules. Finally, the vacuole membrane was punctured, and the granules were released into cytoplasm. During conversion of the prespore to the prestalk cell, the PSV was degraded through the same process as in dedifferentiation, but the degradation proceeded much more synchronously in a converting cell. When a prestalk fragment was isolated from a slug, formation of the PSV was detected in no cell until 2 hr of incubation. After a lag, the PSV was formed in a converting cell through the process which is not a simple reversal of its degrading process.  相似文献   

19.
Prespore cell‐inducing (psi, ψ) factor (PsiA), encoded by the psiA gene of Dictyostelium, is a secreted signal glycoprotein that induces prespore cell differentiation when added to monolayer cultures. In situ hybridization during normal development showed that the psiA gene is highly expressed in scattered cells at the mound stage and in prespore cells at the onset of culmination. The conventional prespore‐cell marker genes, cotC and pspA, were expressed normally in psiA? and psiA overexpressing strains. Expressions of rnrB and cudA are repressed in the prestalk cells of a wild type slug to render prespore specific pattern. However, a promoter‐reporter fusion gene, rnrB:lacZ, showed an ectopic expression in the prestalk cells of the psiA? strain while cudA(psp):lacZ did so in those of the psiA overexpressing strain. Overexpression of psiA delayed expression of the prestalk specific gene, ecmB, during development, while knocking out psiA promoted its expression. In addition, overexpression inhibited DIF‐1‐induced stalk formation in monolayer cultures. Together with the known prespore inducing activity, the results indicate that PsiA regulates both prespore and prestalk/stalk cell differentiation. These results indicate that PsiA is also involved in prestalk cell differentiation.  相似文献   

20.
Cell cycle phase in Dictyostelium is correlated with a different preference for either spore or stalk differentiation. Cells which start development early in the cell cycle (E cells) exhibit a strong tendency to sort to the prestalk region of slugs, while late cell cycle cells (L cells) sort to the prespore region. We investigated the expression of the cAMP chemotactic system during development of synchronized E and L cells and found that E cells exhibit cAMP-binding activity, cell surface cAMP-phosphodiesterase (mPDE) activity, and the ability to relay cAMP signals at least 2 hr earlier and to higher levels than L cells. We hypothesize that E cells are prestalk sorters because they are the first to initiate aggregation centers and respond most effectively with chemotaxis and signal relay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号