首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Regulation of gene expression during water deficit stress   总被引:17,自引:0,他引:17  
  相似文献   

3.
Fruit development is a process involving various signals and gene expression. Protein phosphorylation catalyzed by protein kinases is known to play a key role in eukaryotic cell signalling and so may be involved in the regulation of fruit development. Using the method of exogenous substrate phosphorylation, we characterised the calcium-dependent and calmodulin-independent protein kinase (CDPK) activity and the myelin basic protein (MBP)-phosphoralating activity that could be due to a mitogen-activated protein kinase (MAPK)-like activity in the developing mesocarp of grape berry. The CDPK activity was shown to be predominantly localised in the plasma membrane, while the MAPK-like activity was predominantly associated with endomembranes. The assays of bivalent cation requirement showed that Mn2+ could to a certain extent replace Mg2+ in the incubation system for the protein kinase activities. Both CDPK and MAPK-like activities were resistant to heat treatment. The activities of the two enzymes were fruit developmental stage-specific with the highest activities of both enzymes in the lag growth phase before the ripening stage, suggesting strongly the important roles of the detected CDPK and MAPK-like activities in the fruit development.  相似文献   

4.
5.
Vanadate is beneficial to plant growth at low concentration. However, plant exposure to high concentrations of vanadate has been shown to arrest cell growth and lead to cell death. We are interested in understanding the signalling pathways of rice roots in response to vanadate stress. In this study, we demonstrated that vanadate induced rice root cell death and suppressed root growth. In addition, we found that vanadate induced ROS accumulation, increased lipid peroxidation and elicited a remarkable increase of MAPKs and CDPKs activities in rice roots. In contrast, pre-treatment of rice roots with ROS scavenger (sodium benzoate), serine/threonine protein phosphatase inhibitor (endothall), and CDPK antagonist (W7), reduced the vanadate-induced MAPKs activation. Furthermore, the expression of a MAPK gene (OsMPK3) and four tyrosine phosphatase genes (OsDSP3, OsDSP5, OsDSP6, and OsDSP10) were regulated by vanadate in rice roots. Collectively, these results strongly suggest that ROS, protein phosphatase, and CDPK may function in the vanadate-triggered MAPK signalling pathway cause cell death and retarded growth in rice roots.  相似文献   

6.
7.
8.
9.
In plants, calcium acts as a universal second messenger in various signal transduction pathways. The plant-specific calcium-dependent protein kinases (CDPKs) play important roles regulating downstream components of calcium signaling. We conducted a genome-wide analysis of rice CDPKs and identified 29 CDPK genes and eight closely related kinase genes, including five CDPK-related kinases (CRKs), one calcium and calmodulin-dependent protein kinase (CCaMK) and two phosphoenolpyruvate (PEP) carboxylase kinase-related kinases (PEPRKs). The mRNA splicing sites of the rice CDPKs, CRKs and PEPRKs (but not OsCCaMK) are highly conserved, suggesting that these kinases are derived from a common ancestor. RNA gel blot analyses revealed that the majority of rice CDPK genes exhibited tissue-specific expression. Expression of OsCPK9 was elevated in seedlings infected by rice blast, indicating that this gene plays an important role in signaling in response to rice blast treatment. Our genomic and bioinformatic analyses will provide an important foundation for further functional dissection of the rice CDPK gene family.  相似文献   

10.
11.
12.
13.
Membrane-associated protein kinase activities in developing apple fruit   总被引:1,自引:0,他引:1  
Fruit development is a process involving various signals and gene expression. Protein phosphorylation catalysed by protein kinases is known to play a key role in eukaryotic cell signalling and so may be involved in the regulation of fruit development. Using the method of exogenous substrate phosphorylation, the activity of calcium-dependent and calmodulin-independent protein kinase (CDPK) that was stimulated by phosphatidylserine, and the myelin basic protein (MBP)-phosphorylating activity that could be due to a calcium-independent mitogen-activated protein kinase-like (MAPK-like) activity in the developing apple fruits were identified. The CDPK activity was shown to be predominantly localized in the plasma membrane, whereas in the presence of phosphatidylserine, the high activity of CDPK was detected in both plasma membrane and endomembranes. The MAPK-like activity was predominantly associated with endomembranes. The assays of bivalent cation requirement showed that Mn2+ could replace Mg2+ in the incubation system for the protein kinase activities and stimulate CDPK activity more than Mg2+. Heat treatment abolished CDPK but stimulated MAPK-like activity. The activities of the phosphatidylserine-stimulated CDPK and of the MAPK-like were fruit developmental stage-specific with higher activities of both enzymes in the early and middle developmental stages in comparison with the late developmental stage. These data suggest that the detected protein kinases may play an important role in the fruit development.  相似文献   

14.
The rice dwarf1 (d1) mutant, which is deficient in an α subunit (Gα) of heterotrimeric G protein, was used to obtain specific evidence on the functions of Gα protein in defence signalling in rice. Using proteome analysis, a probenazole‐inducible protein (PBZ1) was detected in the cytosolic fraction of leaf blade of the wild type, but not the d1 mutant. After treatment with probenazol, PBZ1 reached maximal levels at 72 h in the wild type but 96 h in the d1 mutant. The induction of PBZ1 by probenazole treatment was inhibited by protein kinase inhibitors. A 48‐kDa putative mitogen‐activated protein kinase (MAPK) and a 55‐kDa putative Ca2+‐dependent protein kinase (CDPK) showed lower activities in the cytosolic fraction of the d1 mutant than that of the wild type. The activities of these protein kinases were enhanced at 24 h in the wild type and 48 h in the d1 mutant after probenazole treatment. Although the d1 mutant responded to the rice blast fungus similarly to the wild type, the d1 mutant developed rice blight symptoms earlier than the wild type when infected with Xoo. In addition, the blight symptoms were more severe on the mutant than on the wild type, and wilting was frequently observed in the d1 mutant. Furthermore, induction by the bacterial infection of the 48‐kDa putative MAPK and PBZ1 was delayed by 2 and 4 d, respectively, in the d1 mutant compared with the wild type. These results indicate that the Gα protein plays a role in the induction of PBZ1 and protein kinases by probenazole and Xoo, and suggest that the 48‐kDa putative MAPK may be involved in a signalling pathway for resistance to bacterial infection.  相似文献   

15.
16.
The ups and downs of MEK kinase interactions   总被引:24,自引:0,他引:24  
MEK kinases (MEKKs) comprise a family of related serine–threonine protein kinases that regulate mitogen-activated protein kinase (MAPK) signalling pathways leading to c-Jun NH2-terminal kinase (JNK) and p38 activation, induced by cellular stress (e.g., UV and γ irradiation, osmotic stress, heat shock, protein synthesis inhibitors), inflammatory cytokines (e.g., tumour necrosis factor , TNF, and interleukin-1, IL1) and G protein-coupled receptor agonists (e.g., thrombin). These stress-activated kinases have been implicated in apoptosis, oncogenic transformation, and inflammatory responses in various cell types. At present, the signalling events involving MEKKs are not well understood. This review summarises our current knowledge concerning the regulation and function of MEKK family members, with particular emphasis on those factors capable of directly interacting with distinct MEKK isoforms.  相似文献   

17.
18.
19.
We review the role of protein kinases in plant hormone-mediatedsignalling, nutrient signalling and cell cycle control and in the crosstalkbetween these different contributors to plant growth regulation. The areas ofhormone-mediated signalling covered include ABA-mediated responses to osmoticstress, wounding and pathogen attack, as well as ethylene and cytokininsignalling pathways. These areas involve members of several major protein kinasefamilies, including the SNFl-related protein kinase-2 (SnRK2) subfamily, thecalcium-dependent protein kinase (CDPK) family, the mitogen activated protein(MAP) kinase family, the glycogen synthase kinase (GSK)- 3/shaggy family and thereceptor-like protein kinase (RPK) family. In the section on nutrient signallingwe review the role of SnRK1 protein kinases in the global regulation of carbonmetabolism, including aspects of sugar sensing and assimilate partitioning, andwhat is known about nitrogen and sulphur nutrient signalling. In the cell cyclesection, we summarise progress in the elucidation of cell cycle control systemsin plants and discuss the interaction between cell cycle control anddevelopment. We expand further on the hypothesis of crosstalk between differentsignalling pathways in a separate section in which we discuss evidence forinteraction between plant growth regulators and the cell cycle, betweendifferent nutrient signalling pathways, between nutrient and cell cyclesignalling and between nutrient and ABA signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号