首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
2.
Proline utilization A (PutA) is a membrane-associated multifunctional enzyme that catalyzes the oxidation of proline to glutamate in a two-step process. In certain, gram-negative bacteria such as Pseudomonas putida, PutA also acts as an auto repressor in the cytoplasm, when an insufficient concentration of proline is available. Here, the N-terminal residues 1-45 of PutA from P. putida (PpPutA45) are shown to be responsible for DNA binding and dimerization. The solution structure of PpPutA45 was determined using NMR methods, where the protein is shown to be a symmetrical homodimer (12 kDa) consisting of two ribbon-helix-helix (RHH) structures. DNA sequence recognition by PpPutA45 was determined using DNA gel mobility shift assays and NMR chemical shift perturbations (CSPs). PpPutA45 was shown to bind a 14 base-pair DNA oligomer (5'-GCGGTTGCACCTTT-3'). A model of the PpPutA45-DNA oligomer complex was generated using Haddock 2.1. The antiparallel beta-sheet that results from PpPutA45 dimerization serves as the DNA recognition binding site by inserting into the DNA major groove. The dimeric core of four alpha-helices provides a structural scaffold for the beta-sheet from which residues Thr5, Gly7, and Lys9 make sequence-specific contacts with the DNA. The structural model implies flexibility of Lys9 which can make hydrogen bond contacts with either guanine or thymine. The high sequence and structure conservation of the PutA RHH domain suggest interdomain interactions play an important role in the evolution of the protein.  相似文献   

3.
4.
5.
6.
7.
Vinod MP  Bellur P  Becker DF 《Biochemistry》2002,41(20):6525-6532
The multifunctional PutA flavoprotein from Escherichia coli is a peripherally membrane-bound enzyme that has both proline dehydrogenase (PDH) and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) activities. In addition to its enzymatic functions, PutA displays DNA-binding activity and represses proline catabolism by binding to the control region DNA of the put regulon (put intergenic DNA). Presently, information on structure-function relationships for PutA is derived from primary structure analysis. To gain further insight into the functional organization of PutA, our objective is to dissect PutA into different domains and to characterize them separately. Here, we report the characterization of a bifunctional proline dehydrogenase (PutA(669)) that contains residues 1-669 of the PutA protein. PutA(669) purifies as a dimer and has a PDH specific activity that is 4-fold higher than that of PutA. As anticipated, PutA(669) lacks P5CDH activity. At pH 7.5, an E(m) (E-FAD/E-FADH(-)) of -0.091 V for the two-electron reduction of PutA(669)-bound FAD was determined by potentiometric titrations, which is 15 mV more negative than the E(m) for PutA-bound FAD. The pH behavior of the E(m) for PutA(669)-bound FAD was measured in the pH range 6.5-9.0 at 25 degrees C and exhibited a 0.03 V/pH unit slope. Analysis of the DNA and membrane-binding properties of PutA(669) shows that it binds specifically to the put intergenic control DNA with a binding affinity similar to that of PutA. In contrast, we did not observe functional association of PutA(669) with membrane vesicles. We conclude that PutA(669) has FAD-binding and DNA-binding properties comparable to those of PutA but lacks a membrane-binding domain necessary for stable association with the membrane.  相似文献   

8.
9.
10.
11.
12.
Proline utilization by Escherichia coli and Salmonella typhimurium requires expression of genes putP (encoding a proline transporter) and putA. Genetic data indicate that the PutA protein is both put repressor and a respiratory chain-linked dehydrogenase. We report a redesigned purification procedure as well as the physical characteristics and biological activities of the PutA protein purified from E. coli. The purified protein was homogeneous as determined by electrophoresis performed under denaturing and nondenaturing conditions. Its N-terminal sequence corresponded to that predicted by the DNA sequence. We showed copurification of proline and delta 1-pyrroline-5-carboxylate dehydrogenase activities. Purified PutA protein bound put DNA in vitro in an electrophoretic band-shift assay and it could be reconstituted to inverted membrane vesicles, yielding proline dehydrogenase activity. The Stokes radius and Svedberg coefficient of the protein were determined to be 7.1 nm and 9.9 S, respectively. These hydrodynamic data revealed that the protein in our preparation was dimeric with a molecular mass of 293 kDa and that it had an irregular shape indicated by the friction factor (f/f0) of 1.6.  相似文献   

13.
14.
15.
16.
17.
18.
Role of the purine repressor hinge sequence in repressor function.   总被引:4,自引:0,他引:4       下载免费PDF全文
A protease-hypersensitive hinge sequence in Escherichia coli purine repressor (PurR) connects an N-terminal DNA-binding domain with a contiguous corepressor-binding domain. Binding of one molecule of dimeric repressor to operator DNA protects the hinge against proteolytic cleavage. Mutations in the hinge region impair repressor function in vivo. Several nonfunctional hinge mutants were defective in low-affinity binding to operator DNA in the absence of corepressor as well as in high-affinity corepressor-dependent binding to operator DNA, although binding of corepressor was similar to binding of the wild-type repressor. These results establish a role for the hinge region in operator binding and lead to a proposal for two routes to form the holoPurR-operator complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号