首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sexes often differ in the reproductive trait limiting their fitness, an observation known as Bateman's principle. In many species, females are limited by their ability to produce eggs while males are limited by their ability to compete for and successfully fertilize those eggs. As well as promoting the evolution of sex-specific reproductive strategies, this difference may promote sex differences in other life-history traits due to their correlated effects. Sex differences in disease susceptibility and immune function are common. Two hypotheses based on Bateman's principle have been proposed to explain this pattern: that selection to prolong the period of egg production favors improved immune function in females, or that the expression of secondary sexual characteristics reduces immune function in males. Both hypotheses predict a relatively fixed pattern of reduced male immune function, at least in sexually mature individuals. An alternative hypothesis is that Bateman's principle does not dictate fixed patterns of reproductive investment, but favors phenotypically plastic reproductive strategies with males and females adaptively responding to variation in fitness-limiting resource availability. Under this hypothesis, neither sex is expected to possess intrinsically superior immune function, and immunological sex differences may vary in different environments. We demonstrate that sex-specific responses to experimental manipulation of fitness-limiting resources affects both the magnitude and direction of sex differences in immune function in Drosophila melanogaster. In the absence of sexual interactions and given abundant food, the immune function of adults was maximized in both sexes and there was no sex difference. Manipulation of food availability and sexual activity resulted in female-biased immune suppression when food was limited, and male-biased immune suppression when sexual activity was high and food was abundant. The immunological cost to males of increased sexual activity was found to be due in part to reduced time spent feeding. We suggest that for species similarly limited in their reproduction, phenotypic plasticity will be an important determinant of sex differences in immune function and other life-history traits.  相似文献   

2.
Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.  相似文献   

3.
Few studies have influenced thought on the nature of sexual selection to the extent of the classic paper of A. J. Bateman on mating patterns in Drosophila. However, interpretation of his study remains controversial, and a lack of modern empirical evidence prevents a consensus with respect to the perceived utility of Bateman's principles in the study of sexual selection. Here, we use a genetic study of natural mating patterns in the rough-skinned newt, Taricha granulosa, to investigate the concordance between Bateman's principles and the intensity of sexual selection. We found that males experienced strong sexual selection on tail height and body size, while sexual selection was undetectable in females. This direct quantification of sexual selection agreed perfectly with inferences that are based on Bateman's principles. Specifically, males (in comparison with females) exhibited greater standardized variances in reproductive and mating success, as well as a stronger relationship between mating success and reproductive success. Overall, our results illustrate that Bateman's principles provide the only quantitative measures of the mating system with explicit connections to formal selection theory and should be the central focus of studies of mating patterns in natural populations.  相似文献   

4.
Serial monogamy and sex ratio bias in Nazca boobies   总被引:1,自引:0,他引:1  
Biased operational sex ratios (OSRs) can drive sexual selection on members of the over-represented sex via competition for mates, causing higher variance and skew in reproductive success (RS) among them if an individual's quality is a persistent characteristic. Alternatively, costs of reproduction may degrade breeding performance, creating the opportunity for members of the limiting sex to switch mates adaptively, effectively homogenizing variance and skew in RS among the sex in excess. We tested these two contrasting models in a male-biased population of the Nazca booby (Sula granti) with demonstrated costs of reproduction with data on total RS over a 14-year period. Variances and skews in RS were similar, and males changed from breeder to non-breeder more frequently than females. Under the persistent individual quality model, females should mate only with high quality males, and non-breeding males should seldom enter the breeding pool, yet 45% of non-breeding males (re)entered the breeding pool each year on average. Many Nazca booby females apparently exchange a depleted male for a new mate from the pool of current non-breeder males. Our evidence linking serial monogamy to costs of reproduction is novel and suggests selection on female mating preferences based on an interaction between at least two life-history components (OSR and reproductive effort).  相似文献   

5.
Bateman's Principle and Simultaneous Hermaphrodites: A Paradox   总被引:4,自引:2,他引:2  
Bateman's principle states that reproductive success is limiteda) in females by the resources available for egg production;and b) in males, only by access to females and/or eggs. Theprinciple has been used to generate predictions for two aspectsof hermaphroditism; a) the advantage of hermaphroditism andb) sexual conflict. Comparing these predictions to the empiricaldata offers tests of Bateman's principle. Charnov's predictionthat hermaphroditism would occur under circumstances where Bateman'sprinciple does not apply is found to be largely correct. However,the prediction as to the association of hermaphroditism andlow fixed costs is inconsistent with the data. Alternative explanationsthat predict that hermaphroditism is a strategy for reducingvariance in reproductive success may better explain the data.Probability theory demonstrates that where two strategies haveequal mean fitness, which must be the case for male and femalefunction, the strategy with the lower variance in reproductivesuccess must have higher fitness (Gillespie's principle). Bateman'sprinciple predicts that this will be the female role in hermaphrodites.However, Charnov, assuming Bateman's principle, predicted thatsexual conflict stemming from a preference for the male rolewould be important in hermaphrodite mating systems, creatinga paradox. Many hermaphrodite mating systems are based on conditionalreciprocity with a preferred sexual role indicating sexual conflict.The data demonstrate that the preferred role varies among taxa,contrary to the predictions of Bateman's principle. It has beensuggested that Bateman's principle can explain cases in whichthe female role is preferred (sperm-trading) as involving energyrather than gamete trading. However, energetic considerationssuggest that energy trading would only be adaptive if Bateman'sprinciple does not apply, paradoxically. The gamete tradingmodel, based on the prediction that the role that offers controlof fertilization will be preferred, is more consistent withthe data. Application of Bateman's principle to hermaphroditesleads to contradictory predictions and does not offer the basisfor a coherent theory of sexual selection, as Bateman proposed.  相似文献   

6.
The immune system is an energetically expensive self-maintenance complex that, given the risks of parasitism, cannot be carelessly compromised. Life-history theory posits that trade-offs between fitness components, such as self-maintenance and reproduction, vary between genders and age classes depending on their expected residual lifetime reproductive success, and seasonally as energetic requirements change. Using ruff (Philomachus pugnax), a bird with two genetically distinct male morphs, we demonstrate here a decrease in male immunocompetence during the breeding season, greater variance in immune response among males than females, immunosenescence in both sexes and male morphs, and a seasonal shift in the age range required to detect senescence. Using a phytohaemagglutinin delayed hypersensitivity assay, we assessed cell-mediated immunity (CMI) of males of typical breeding age during the breeding and nonbreeding seasons, and of a larger sample that included females and birds of a greater age range during the non-breeding period. CMI was higher for breeding-aged males in May than in November, but the increase was not related to age or male morph. In November, mean CMI did not differ between the sexes, but the variance was higher for males than for females, and there were no differences in mean or variance between the two male morphs. For both sexes and male morphs, CMI was lower for young birds than for birds of typical breeding ages, and it declined again for older birds. In males, senescence was detected in the non-breeding season only when very old birds were included. These results, generally consistent with expectations from life-history theory, indicate that the immune system can be involved in multifarious trade-offs within a yearly cycle and along an individual's lifetime, and that specific predictions about means and variances in immune response should be considered in future immunoecological research.  相似文献   

7.
In diverse animal species, from insects to mammals, females display a more efficient immune defence than males. Bateman's principle posits that males maximize their fitness by increasing mating frequency whereas females gain fitness benefits by maximizing their lifespan. As a longer lifespan requires a more efficient immune system, these implications of Bateman's principle may explain widespread immune dimorphism among animals. Because in most extant animals, the provisioning of eggs and a higher parental investment are attributes of the female sex, sex-role reversed species provide a unique opportunity to assess whether or not immune dimorphism depends on life history and not on sex per se. In the broad-nosed pipefish Syngnathus typhle, males brood and nourish the eggs in a ventral pouch and thus invest more into reproduction than females. We found males to have a more active immune response both in field data from four populations and also in an experiment under controlled laboratory conditions. This applied to different measures of immunocompetence using innate as well as adaptive immune system traits. We further determined the specificity of immune response initiation after a fully factorial primary and secondary exposure to a common marine pathogen Vibrio spp. Males not only had a more active but also a more specific immune defence than females. Our results thus indeed suggest that the sex that invests more into the offspring has the stronger immune defence.  相似文献   

8.
Hamilton's theory of inclusive fitness suggests that helpers in animal societies gain fitness indirectly by increasing the reproductive performance of a related beneficiary. Helpers in cooperatively breeding birds, mammals and primitively eusocial wasps may additionally obtain direct fitness through inheriting the nest or mating partner of the former reproductive. Here, we show that also workers of a highly eusocial ant may achieve considerable direct fitness by producing males in both queenless and queenright colonies. We investigated the reproductive success of workers of the ant Temnothorax crassispinus in nature and the laboratory by dissecting workers and determining the origin of males by microsatellite analysis. We show that workers are capable of activating their ovaries and successfully producing their sons independently of the presence of a queen. Genotypes revealed that at least one fifth of the males in natural queenright colonies were not offspring of the queen. Most worker‐produced males could be assigned to workers that were unrelated to the queen, suggesting egg‐laying by drifting workers.  相似文献   

9.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

10.
MARTIN WEGGLER 《Ibis》2001,143(2):264-272
Reproductive constraints on sexually mature, young birds may be the underlying cause for the evolution and maintenance of delayed plumage maturation in passerine birds. I examined whether yearling male Black Redstarts in non-definitive plumage are reproductively handicapped and explored possible reasons for it. Yearlings raised only half as many young per season as adults. Differential reproductive effort was excluded as a possible source for age-related reproductive success because yearlings and adults did not differ in the frequency of non-breeding or in paternal effort. The lower annual reproductive success of yearlings was attributed to their lower probability of obtaining (multiple) females and adult females. Males mated to adult females raised almost twice as many offspring as males mated to yearling females. I conclude that the proposed preconditions for the evolution and maintenance of delayed plumage maturation do still prevail in the Black Redstart.  相似文献   

11.
Sexual selection is potentially stronger than natural selection when the variance in male reproductive fitness exceeds all other components of fitness variance combined. However, measuring the variance in male reproductive fitness is difficult when nonmating males are absent, inconspicuous, or otherwise difficult to find. Omitting the nonmating males inflates estimates of average male reproductive success and diminishes the variance, leading to underestimates of the potential strength of sexual selection. We show that, in theory, the proportion of the total variance in male fitness owing to sexual selection is approximately equal to H, the mean harem size, as long as H is large and females are randomly distributed across mating males (i.e., Vharem=H). In this case, mean harem size not only provides an easy way to estimate the potential strength of sexual selection but also equals the opportunity for sexual selection, I(mates). In nature, however, females may be overdispersed with VharemH. We show that H+(k-1) is a good measure of the opportunity for sexual selection, where k is the ratio Vharem/H. A review of mating system data reveals that in nature the median ratio for Vharem/H is 1.04, but as H increases, females tend to become more aggregated across mating males with V(harem) two to three times larger than H.  相似文献   

12.
TOM A. LANGEN 《Ibis》1996,138(3):506-513
Greenwood explained the different sex bias in dispersal of birds (usually female biased) and mammals (usually male biased) by a difference in mating systems: male birds primarily defend resources while male mammals primarily defend females. The White-throated Magpie-jay Calocitta formosa is unusual among birds in that females are philopatric and jointly defend permanent resource territories while males disperse before they are 2 years of age. One female in a group is the primary breeder. One male joins the group permanently as her mate. Males that do not have a permanent breeding position circulate among groups and attempt to mate with both the primary breeding female and other group females. Other females feed the primary breeder and her offspring and also pursue other reproductive behaviour, including secondary nesting in the territory and egg dumping into the primary breeder's nest. I argue that the unusual dispersal pattern in this species is a result of the alternative reproductive strategies that can be pursued by males and females excluded from being primary breeders. The White-throated Magpie-jay conforms to Greenwood's predictions: males pursue a mate defence rather than resource defence mating system and they are the dispersing sex. The primary factor influencing alternative reproductive tactics may be asynchronous reproduction among groups during the long breeding season arising from frequent renesting in an area of high nest predation.  相似文献   

13.
1. The persistence of multiple mating remains one of the fundamental questions in evolutionary biology. In theory, multiple mating is predicted to improve female fitness cumulatively through direct and/or genetic benefits. However, intra-locus sexual conflicts may potentially constrain or even eliminate these benefits owing to the gender load imposed by sexually antagonistic selection. 2. Here, we tested whether sexually antagonistic selection can maintain the variance in multiple mating behaviour of bank voles (Myodes glareolus) by manipulating the hormone testosterone through artificial selection in the laboratory. Among mammals, testosterone is a sexually dimorphic fitness-related trait under selection and is known to affect mating behaviour. We conducted mating trials in which females derived from family-based selection of testosterone were sequentially paired with four males of different testosterone profiles. 3. We show that artificial selection for high testosterone increased the mating rate of males, but clearly decreased the number of partners that females mated with (and vice versa). Because multiple mating was beneficial for the reproductive success of both sexes, as evidenced by the positive Bateman gradients, the divergent evolutionary interests of testosterone between the sexes can maintain this polygynandrous mating system. 4. Our results highlight how mating rate is concordantly selected in both sexes; however, it is largely influenced by testosterone, which is under sexually antagonistic selection. 5. This study is the first one to emphasise the direct and indirect effects of the endocrine system not only on reproductive physiology and behaviour but also for the evolution of genetic mating strategies in mammals.  相似文献   

14.
Studies are increasingly demonstrating that individuals differ in their rate of ageing, and this is postulated to emerge from a trade-off between current and future reproduction. Recent theory predicts a correlation between individual personality and life-history strategy, and from this comes the prediction that personality may predict the intensity of senescence. Here we show that boldness correlates with reproductive success and foraging behaviour in wandering albatrosses, with strong sex-specific differences. Shy males show a strong decline in reproductive performance with age, and bold females have lower reproductive success in later adulthood. In both sexes, bolder birds have longer foraging trips and gain more mass per trip as they get older. However, the benefit of this behaviour appears to differ between the sexes, such that it is only matched by high reproductive success in males. Together our results suggest that personality linked foraging adaptations with age are strongly sex-specific in their fitness benefits and that the impact of boldness on senescence is linked to ecological parameters.  相似文献   

15.
The immunocompetence handicap hypothesis (ICHH) of Folstad and Karter has inspired a large number of studies that have tried to understand the causal basis of parasite-mediated sexual selection. Even though this hypothesis is based on the double function of testosterone, a hormone restricted to vertebrates, studies of invertebrates have tended to provide central support for specific predictions of the ICHH. I propose an alternative hypothesis that explains many of the findings without relying on testosterone or other biochemical feedback loops. This alternative is based on Bateman's principle, that males gain fitness by increasing their mating success whilst females increase fitness through longevity because their reproductive effort is much higher. Consequently, I predict that females should invest more in immunity than males. The extent of this dimorphism is determined by the mating system and the genetic correlation between males and females in immune traits. In support of my arguments, I mainly use studies on insects that share innate immunity with vertebrates and have the advantage that they are easier to study.  相似文献   

16.
In Drosophila melanogaster, biological rhythms, aggression and mating are modulated by group size and composition. However, the fitness significance of this group effect is unknown. By varying the composition of groups of males and females, we show that social context affects reproductive behaviour and offspring genetic diversity. Firstly, females mating with males from the same strain in the presence of males from a different strain are infecund, analogous to the Bruce effect in rodents, suggesting a social context-dependent inbreeding avoidance mechanism. Secondly, females mate more frequently in groups composed of males from more than one strain; this mitigates last male sperm precedence and increases offspring genetic diversity. However, smell-impaired Orco mutant females do not increase mating frequency according to group composition; this indicates that social context-dependent changes in reproductive behaviour depend on female olfaction, rather than direct male-male interactions. Further, variation in mating frequency in wild-type strains depends on females and not males. The data show that group composition can affect variance in the reproductive success of its members, and that females play a central role in this process. Social environment can thus influence the evolutionary process.  相似文献   

17.
Environmental factors during early development may have profound effects on subsequent life-history traits in many bird species. In wild birds, sex-specific effects of early ontogeny on natal dispersal and future reproduction are not well understood. The objective of this work was to determine whether hatching date and pre-fledging mass and condition of free-living Great Tits Parus major have any subsequent effect on individuals’ natal dispersal and reproductive performance at first breeding. Both males and females dispersed longer distances in coniferous than in deciduous forests, while dispersal was condition-dependent only in males (heavier as nestlings dispersed farther). In females, mass and condition at pre-fledging stage correlated significantly with clutch size, but not with subsequent reproductive performance as measured by fledging success or offspring quality. In contrast, heavier males as nestlings had higher future fledging success and heavier offspring in their broods compared with those in worse condition as nestlings. The hatching date of female as well as male parents was the only parental parameter related to the number of eggs hatched at first breeding. These results indicate that pre-fledging mass and condition predict subsequent fitness components in this bird species. We suggest that sex-specific relationships between a disperser’s condition and its selectivity with respect to breeding habitat and subsequent performance need to be considered in future models of life-history evolution.  相似文献   

18.
It is widely accepted that male age can influence female mating preference and subsequent fitness consequences in many polyandrous species, yet this is seldom investigated in monandrous species. In the present study, we use the monandrous pine moth Dendrolimus punctatus to examine the effects of male age on female mating preference and future reproductive potential. In multiple male trials, when permitted free mating from an aggregation consisting of virgin males aged 0 (young), 2 (middle-aged) and 4 (old) days, virgin females preferentially mate with young and middle-aged males, although mating latency and mating duration are independent of male age. In single male trials, when virgin females are randomly assigned single virgin males of known age, a negative correlation is found between mating success and male age in this species. However, we find that male age also has no effect on mating latency and mating duration. Further fitness analysis reveals that females do not receive benefits in terms of oviposition period, total egg production, average daily egg production, percentage of egg hatching, longevity, expected reproduction and relative expected reproduction from mating with young and middle-aged males compared with mating with old males. The results of the present study are the first demonstrate that females mated preferentially with younger males but gain no apparent fitness benefits in a monandrous moth species.  相似文献   

19.
Variation of reproductive success, an important determinant of the opportunity for sexual selection, is an outcome of competition within one sex for mating with members of the other sex. In promiscuous species, males typically compete for access to females, and their reproductive strategies are strongly related to the spatial distribution of females. I used 10 microsatellite loci and the mtDNA control region to determine seasonal differences in the reproductive success of males and females of the common vole (Microtus arvalis), one of the most numerous mammals in Europe. The sex-related spatial structure and bias in dispersal between genders were also assessed. Standardized variance of the reproductive success of females did not vary seasonally due to the continuity of female philopatry throughout the breeding season and to the constancy of the number of females reproducing successfully in each season. The males are the dispersing sex, undergoing both natal and breeding dispersal. Their standardized variance of reproductive success was significantly higher than that for females in July, when only two males monopolized 80% of the females in the population and when variance of male reproductive success was highest (Im = 7.70). The seasonally varying and high standardized variance of male reproductive success may be explained by male-male competition for matings, coupled with seasonal changes in the age structure of the population.  相似文献   

20.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号