首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Autonomous tonic firing of the midbrain dopamine neuron is essential for maintenance of ambient dopamine level in the brain, in which intracellular Ca2+ concentration ([Ca2+]c) plays a complex but pivotal role. However, little is known about Ca2+ signals by which dopamine neurons maintain an optimum spontaneous firing rate. In the midbrain dopamine neurons, we here show that spontaneous firing evoked [Ca2+]c changes in a phasic manner in the dendritic region but a tonic manner in the soma. Tonic levels of somatic [Ca2+]c strictly tallied with spontaneous firing rates. However, manipulatory raising or lowering of [Ca2+]c with caged compounds from the resting firing state proportionally suppressed or raised spontaneous firing rate, respectively, suggesting presence of the homeostatic regulation mechanism for spontaneous firing rate via tonic [Ca2+]c changes of the soma. More importantly, abolition of this homeostatic regulation mechanism significantly exaggerated the responses of tonic firings and high-frequency phasic discharges to glutamate. Therefore, we conclude that this Ca2+-dependent homeostatic regulation mechanism is responsible for not only maintaining optimum rate of spontaneous firing, but also proper responses to glutamate. Perturbation of this mechanism could cause dopamine neurons to be more vulnerable to glutamate and Ca2+ toxicities.  相似文献   

2.
3.
Many agonists bring about their effects on cellular functions through a rise incytosolic [Ca2+]([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studiesof single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporalorganization that is established by coordinated activation of IP3 receptor Ca2+ channels.Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors areefficiently transmitted to the mitochondria. An important function of mitochondrial calciumsignals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meetdemands for increased energy in stimulated cells. Activation of the permeability transitionpore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death.Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organizationof [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calciumsignaling as well. This paper summarizes recent research to elucidate the mechanisms andsignificance of IP3-dependent mitochondrial calcium signaling.  相似文献   

4.
5.
Kruglikov  I.  Shutov  L.  Potapenko  E.  Kostyuk  P.  Voitenko  N. 《Neurophysiology》2002,34(2-3):165-167
Elevations of the cytosolic free Ca2+ concentration ([Ca2+] i ) in rat dorsal horn neurons induced by addition of ATP to the medium were compared in spinal cord slices and after isolation of the neurons. In slices, application of ATP results in an increase in the [Ca2+] i by 201 ± 12 nM, on the average; in a Ca2+ -free external solution the respective rise was 156 ± 14 nM (n = 45 of 76 examined cells), which indicate the presence of active purinergic metabotropic receptors in about 59% of the neurons. In freshly isolated neurons with absent dendrites, we found no metabotropic responses. Thus, the results confirm the conclusion on the localization of metabotropic postsynaptic purinoreceptors mostly on the dendritic tree of dorsal horn neurons.  相似文献   

6.
In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca2+ ([Ca2+]c) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca2+influx. The [Ca2+]c level increased sharply, followed by a rapid increase in mitochondrial Ca2+ [Ca2+]m. The increase in the [Ca2+]m level accompanied a reduction in the [Ca2+]c level. After reaching a peak, the [Ca2+]c level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.  相似文献   

7.
Dopamine (DA) neurons release DA not only from axon terminals at the striatum, but from their somata and dendrites at the substantia nigra pars compacta (SNc). Released DA may auto-regulate further DA release or modulate non-DA cells. However, the actual mechanism of somatodendritic DA release, especially the Ca2+ dependency of the process, remains controversial. In this study, we used amperometry to monitor DA release from somata of acutely isolated rat DA neurons. We found that DA neurons spontaneously released DA in the resting state. Removal of extracellular Ca2+ and application of blockers for voltage-operated Ca2+ channels (VOCCs) suppressed the frequency of secretion events. Activation of VOCCs by stimulation with K+-rich saline increased the frequency of secretion events, which were also sensitive to blockers for L- and T-type Ca2+ channels. These results suggest that Ca2+ influx through VOCCs regulates DA release from somata of DA neurons.  相似文献   

8.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.  相似文献   

9.
The excitotoxicity of glutamate is believed to be mediated by sustained increase in the cytosolic Ca2+ concentration. Mitochondria play a vital role in buffering the cytosolic calcium overload in stimulated neurons. Here we have studied the glutamate induced Ca2+ signals in cortical brain slices under physiological conditions and the conditions that modify the mitochondrial functions. Exposure of slices to glutamate caused a rapid increase in [Ca2+]i followed by a slow and persistently rising phase. The rapid increase in [Ca2+]i was mainly due to influx of Ca2+ through the N-methyl-D-aspartate (NMDA) receptor channels. Glutamate stimulation in the absence of Ca2+ in the extracellular medium elicited a small transient rise in [Ca2+]i which can be attributed to the mobilization of Ca2+ from IP3 sensitive endoplasmic reticulum pools consequent to activation of metabotropic glutamate receptors. The glutamate induced Ca2+ influx was accompanied by depolarization of the mitochondrial membrane, which was inhibited by ruthenium red, the blocker of mitochondrial Ca2+ uniporter. These results imply that mitochondria sequester the Ca2+ loaded into the cytosol by glutamate stimulation. Persistent depolarization of mitochondrial membrane observed in presence of extracellular Ca2+ caused permeability transition and released the sequestered Ca2+ which is manifested as slow rise in [Ca2+]i. Protonophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) depolarized the mitochondrial membrane and enhanced the glutamate induced [Ca2+]i response. Contrary to this, treatment of slices with mitochondrial inhibitor oligomycin or ruthenium red markedly reduced the [Ca2+]i response. Combined treatment with oligomycin and rotenone further diminished the [Ca2+]i response and also abolished the CCCP mediated rise in [Ca2+]i. However, rotenone alone had no effect on glutamate induced [Ca2+]i response. These changes in glutamate-induced [Ca2+]i response could not be explained on the basis of deficient mitochondrial Ca2+ sequestration or ATP dependent Ca2+ buffering. The mitochondrial inhibitors reduced the cellular ATP/ADP ratio, however, this would have restrained the ATP dependent Ca2+ buffering processes leading to elevation of [Ca2+]i. In contrast our results showed repression of Ca2+ signal except in case of CCCP which drastically reduced the ATP/ADP ratio. It was inferred that, under the conditions that hamper the Ca2+ sequestering ability of mitochondria, the glutamate induced Ca2+ influx could be impeded. To validate this, influx of Mn2+ through ionotropic glutamate receptor channel was monitored by measuring the quenching of Fura-2 fluorescence. Treatment of slices with oligomycin and rotenone prior to glutamate exposure conspicuously reduced the rate of glutamate induced fluorescence quenching as compared to untreated slices. Thus our data establish that the functional status of mitochondria can modify the activity of ionotropic glutamate receptor and suggest that blockade of mitochondrial Ca2+ sequestration may desensitize the NMDA receptor operated channel.  相似文献   

10.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号