首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase.Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid - DTT dithiothreitol - SSAD succinic semialdehyde dehydrogenase - GABAT 4-aminobutyrate transaminase - GABA 4-aminobutyrate  相似文献   

2.
When growing on a mixture of ammonia and l-glutamate as nitrogen sources, Rhizobium leguminosarum biovar trifolii MNF1000 utilizes ammonia exclusively, while cowpea Rhizobium MNF2030 utilizes both compounds at similar rates. l-Glutamate transport in both strain MNF1000 and MNF2030 is active, giving rise to a 60-fold concentration gradient across the membrane of cells of strain MNF2030. Both strains produce two kinetically distinguishable glutamate transport systems under all conditions of growth — a high affinity system with an apparent K m of 0.06–0.17 M but of relatively low V max, and a low affinity system with a K m of 1.2–6.7\ M, but of higher overall capacity. l-Glutamate transport activity in cells of MNF2030 was relatively insensitive to the presence of ammonia in the growth medium. By contrast, ammonia in the growth medium resulted in low activities of glutamate transport in cells of MNF1000 which were provided with a carbon source, offering one explanation for the failure of this strain to use glutamate in the presence of ammonia. However, in cells of MNF1000 growing on glutamate as sole source of carbon and nitrogen, the glutamate transport system is synthesized, even in the presence of accumulated or added ammonia. This suggests that the regulation of the glutamate permease also depends on availability of carbon source.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

3.
Smart  J. B.  Dilworth  M. J.  Robson  A. D. 《Archives of microbiology》1984,140(2-3):281-286
The effect of P nutrition on phosphate uptake and alkaline phosphatase activity was studied in chemostat culture for four rhizobial and three bradyrhizobial species. Phosphate-limited cells took up phosphate 10- to 180-fold faster than phosphate-rich cells. The four fast-growing rhizobial strains contained high levels of alkaline phosphatase activity under P-limited conditions compared to the repressed levels found in P-rich cells; alkaline phosphatase activity could not be detected in three slow-growing rhizobial strains, regardless of their P-status.Glycerol 1-phosphate-uptake in the cowpea Rhizobium NGR234 was derepressed over 50-fold under P-limited conditions, and appeared to be co-regulated with phosphate uptake.The phosphate-uptake system appeared similar in all strains with apparent K m values ranging from 1.6 M to 6.0 M phosphate and maximum activities from 17.2 to 126 nmol · min-1 · (mg dry weight of cells)-1. Carbonyl cyanide m-chlorophenyl hydrazone strongly inhibited phosphate uptake in all strains and a number of other metabolic inhibitors also decreased phosphate uptake in the cowpea Rhizobium NGR234. The phosphate uptake system in all strains failed to catalyse exchange of 32P label in preloaded cells or efflux of phosphate. The results suggest a single, repressible, unidirectional and energy-dependent system for the transport of phosphate into rhizobia.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulphonic acid  相似文献   

4.
Bacteroids of R. leguminosarum MNF3841 isolated from pea nodules using Percoll gradients had activities of TCA cycle enzymes up to 6-fold higher than those measured in free-living cells grown on fumarate or sucrose. Activities of sugar catabolic enzymes on the other hand were 2–14-fold lower in isolated bacteroids than in sucrose-grown free-living cells. In continuous culture, cells of strain MNF3841 grown on sucrose under P i limitation had 2–3-fold higher activities of invertase, glucose-6-phosphate dehydrogenase, the Entner-Doudoroff enzymes and 6-phosphogluconate dehydrogenase, than cells grown on fumarate. With one exception O2 limited cultures had similar activities of the carbon catabolic enzymes to P i-limited cultures grown in the same substrate. Glucose-6-phosphate dehydrogenase in O2-limited cells grown of fumarate was 50% lower than in P i-limited cells. Co-utilization of fumarate and sucrose occurred with chemostat cultures supplied with both under a variety of conditions.Abbreviations E-D Entner-Doudoroff - EMP Embden-Meyerhof-Parnas - PEPCK phosphoenolpyruvate carboxy kinase - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulphonic acid]  相似文献   

5.
A. N. Rai  P. Lindblad  B. Bergman 《Planta》1986,169(3):379-381
Using the ammonium analogue 14CH3NH 3 + , ammonium transport was studied in the cyanobiont cells freshly isolated from the root nodules of Cycas revoluta. An L-methionine-dl-sulphoximine (MSX)-insensitive ammonium-transport system, which was dependent on membrane potential (), was found in the cyanobiont. However, the cyanobiont was incapable of metabolizing exogenous 14CH3NH 3 + or NH 4 + because of the absence of another ammonium-transport system responsible for the uptake of ammonium for assimilation via glutamine synthetase (EC 6.3.1.2). Such a modification seems to be the result of symbiosis because the free-living cultured isolate, Anabaena cycadeae, has been shown to possess both the ammonium-transport systems.Abbreviations and symbol ATS/ATSs ammonium transport system/systems - Chl chlorophyll - GS glutamine synthetase - MSX L-methionine-dl-sulphoximine - membrane potential  相似文献   

6.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

7.
[14C]Methylamine influx intoPisum sativum L. cv. Feltham First seedlings showed Michaelis-Menten-type kinetics with apparentV max=49.2 mol·g-1 FW·h-1 and apparentK m=0.51 mM. The competitive interactions between ammonium and methylamine were most obvious when biphasic kinetics were assumed with saturation of the first phase at 0.05 mM. The inhibitor constant for ammonium (K i)=0.027 mM. When [14C]methylamine was used in trace amounts with ammonium added as substrate, the influx of tracer showed Michaelis-Menten-type kinetics with apparentV max=3.46 mol·g-1 FW·h-1 and apparentK m=0.15 mM. The initial rate of net ammonium uptake corresponded with that found when [14C]methylamine was used to trace ammonium influx. The latter was also stimulated by high pHo and inhibited by nitrate. Ammonium pretreatment±methionine sulphoximine or glutamine pretreatment of the seedlings inhibited subsequent [14C]methylamine influx, while methylamine or asparagine pretreatment stimulated [14C]methylamine influx. There was also a stimulatory effect of prior inoculation withRhizobium. The results are discussed in terms of current models for the regulation of ammonium uptake in plants.  相似文献   

8.
An ammonium transport system in the phototrophic N2-fixing bacteriumRhodospirillum rubrum was characterized by using the uptake of14C-methylamine as a probe.Uptake showed saturation kinetics with an apparentK m =110 M. It was competitively inhibited by ammonium (K i =7 M). Uptake exhibited a narrow pH maximum around pH 7.0.Up to 200-fold gradients across the membrane were formed within 40–60 min. Gradient formation was inhibited by carbon starvation, azide or cyanide. Pre-accumulated methylamine was released by ammonium pulses to more than 80%, indicating only minor metabolization.The synthesis of the transport system was repressed by ammonium in high concentrations.  相似文献   

9.
Acetate uptake by strains of Synechococcus and Aphanocapsa in short experiments required light, and was strongly inhibited by m-dichlorocarbonyl cyanide phenylhydrazone and dichlorophenyl dimethyl urea. Acetate carbon was distributed in amino acids and in the acyl portion of lipids in the same way as during growth experiments when CO2 was available, but the reduced incorporation in the absence of CO2 was primarily into the lipid fraction. An apparent K m for uptake by Synechococcus and for Aphanocapsa 6308 of 20 and 180 M at pH 7.4 was obtained; corresponding V max values were 6 and 11 nmol x min-1 x mg protein-1. Uptake with Synechococcus was affected by pH, with affinity decreased and maximal rate increase with rising pH. Acetate uptake was not affected by propionate or butyrate when both were added at the same time, but a light and concentration dependent inhibition developed if suspensions were preincubated with propionate. Acetate carbon moved rapidly into acid insoluble material, but after 10–15 s 75% or more of the recovered intracellular counts were in acetyl CoA. Counts in this compound were reduced by preincubation with propionate.Kinetic measurements of acetyl CoA synthetase in fractionated cell extracts gave values for K m of about 50 M for acetate, 5 mM for propionate, 100 M for CoA and 0.38 mM for ATP. The internal pool of free CoA was measured to be about 20 M, and was reduced by preincubation with propionate. This suggests that the activity of CoA-mediated reactions may be regulated by the availability of this cofactor.Abbreviations Used CCCP m-Dichlorocarbonyl cyanide phenyl hydrazone - DCMU dichlorophenyl dimethyl urea - TCA trichloroacetic acid - Tris trishydroxymethyl amino methane - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid  相似文献   

10.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   

11.
Active Cl- uptake by Chlorella fusca was examined by using 36Cl as a label. Under light/air conditions chloride influx from a 2.4·10-5 M solution was 4.0±0.04 nmol m-2s-1. After 70±10 min a stationary 380±40 fold accumulation was reached. In dark/air and dark/argon influx and accumulation were reduced to 25±6%, respectively, 5±1.5% of the light/air control. Cl- uptake had a broad optimum around pH 7 and showed saturation kinetics with a K M of 1.25·10-5 M and a v max of 7.0 nmol m-2s-1 in light/air. Br- inhibited Cl- uptake strongly, J-, ClO 4 - , SO 4 2- , and NO 3 - had no inhibitory effect. Inhibitor studies with carbonyl cyanide m-chlorophenylhydrazone and N,N-dicyclohexylcarbodiimide resulted in a good correlation between Cl- uptake and ATP level. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea and darkness reduced transport activity without affecting the ATP level.The magnitudes of the pH gradient and the membrane potential across the cell membrane were determined and/or estimated under different conditions. It could be shown that in Chlorella Cl- transport cannot proceed via secondary active H+/Cl- cotransport. In addition, 2H+/Cl- cotransport seems unlikely for energetic reasons. On the basis of the results of this and the following study, a primary active ATP-driven Cl-/OH- exchange pump is proposed.Abbreviations CCCP carbonyl cyanide m-chlorophenylhyd razone - DCCD N,N-dicyclohexylcarbodiimide - DCMU 3-(3.4-dichlorophenyl)-1.1-dimethylurea - DMO 5,5-dimethyloxazolidine-2,4-dione - Hepes N-2-hydroxyethylpiperazine-N ethane-sulfonic acid - POPOP 1.4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2.5-diphenyloxazole To whom correspondence should be addressed  相似文献   

12.
Exogenous proline betaine (N,N-dimethylproline or stachydrine) highly stimulated the growth rate of Rhizobium meliloti, in media of inhibitory concentration of NaCl whereas proline was ineffective. High levels of proline betaine uptake occurred in cells grown in media of elevated osmotic strength; on the contrary, only low activity was found in cells grown in minimal medium. The apparent K m was 10 M with a maximal transport rate of 25 nmol min-1 mg-1 of protein in 0.3 M NaCl-grown cells. The concentrative transport was totally abolished by KCN (2 mM), 2,4-dinitrophenol (2 mM), and carbonyl cyanide-m-chlorophenyl hydrazone (CCCP 10 M) but was insensitive to arsenate (5 mM). Glycine betaine was a very potent inhibitor of proline betaine uptake while proline was not. Proline betaine transport was not reduced in osmotically shocked cells and no proline betaine binding activity was detected in the crude periplasmic shock fluid. In the absence of salt stress, Rhizobium meliloti actively catabolized proline betaine but this catabolism was blocked by increasing the osmotic strength of the medium. The osmolarity in the growth medium regulates the use of proline betaine either as a carbon and nitrogen source or as an osmoprotectant.Abbreviations LAS lactate-aspartate-salts - MSY mannitol-salts-yeast - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DCCD dicyclohexylcarbodiimide - KCN potassium cyanide - Hepes 4-(2-hydroxyethyl)-1-piperzine-ethanesulphonic acid  相似文献   

13.
Free living cells of Rhizobium leguminosarum contain a constitutive glucose uptake system, except when they are grown on succinate, which appears to prevent its formation. Bacteroids isolated from Pisum sativum L fail to accumulate glucose although they actively take up 14C-succinate. Glucose uptake in free living cells is an active process since uptake was inhibited by azide, cyanide, dinitrophenol and carbonyl-m-chlorophenyl hydrazone but not by fluoride or arsenate. The non-metabolizable analogue -methyl glucose was extracted unchanged from cells, showing that it was not phosphorylated during its transport. Galactose also appears to the transported via the glucose uptake system. Organic acids, amino acids and polyols had no effect on the actual uptake of glucose. The K m for -methyl glucose uptake was 2.9×10-4 M.  相似文献   

14.
Hudman  J. F.  Glenn  A. R. 《Archives of microbiology》1984,140(2-3):252-256
Selenite uptake and incorporation in Selenomonas ruminantium was constitutive with an inducible component. It was distinct from sulphate or selenate transport, since sulphate and selenate did not inhbit uptake, nor could sulphate or selenate uptake be demonstrated. Selenite uptake had an apparent K m of 1.28 mM and a V max of 148 ng Se min-1 mg-1 protein. Uptake was sensitive to inhibition by 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), azide, iodoacetic acid (IAA) and N-ethylmaleimide (NEM), but not chloropromazine (CPZ), N,N-dicyclohexyl-carbodiimide (DCCD), quinine, arsenate, or fluoride. Treatment of cells accumulating 75[Se]-Selenite with 2,4,DNP inhibited uptake, but did not cause efflux. Transport of selenite was inhibited by sulphite and nitrite, but not by nitrate, phosphate, sulphate of selenate. 75[Se]-Selenite was incorporated into selenocystine, selenoethionine, selenohomocysteine, and selenomethionine and was also reduced to red elemental selenium.  相似文献   

15.
Uptake of 35S-labelled sulfate and thiosulfate was studied in twenty sulfate-reducing bacteria. Micromolar additions of these substrates were highly accumulated by washed cells of freshwater and marine strains. In marine strains accumulation required Na+. Generally, the uptake capacity was increased after sulfate limitation during growth. With two marine species, Desulfovibrio salexigens and Desulfobacterium autotrophicum, the effects of various ionophores and inhibitors affecting the transmembrane pH or Na+ gradient or the membrane potential were studied. In both strains transport was reversible. There was no discrimination between sulfate and thiosulfate. With increasing additions the amount taken up increased, while the accumulation factor (Cin/Cout) decreased. Uptake was not directly correlated with the ATP level inside the cells. From these results and the action patterns of the inhibitors tested it is concluded that marine sulfate-reducing bacteria accumulate sulfate and thiosulfate electrogenically in symport with Na+ ions, while in freshwater strains protons are symported. The high-accumulating systems are induced only at low sulfate concentration, while low-accumulating systems are active at sulfate-sufficient conditions.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - ETH 157 N, N-dibenzyl-N,N-diphenyl-1,2-diphenylendioxydiacetamide - TCS 3,3,4,5-tetrachlorosalicylanilide  相似文献   

16.
The free-living cyanobacterium Anabaena variabilis showed a biphasic pattern of 14CH3NH 3 + uptake. Initial accumulation (up to 60 s) was independent of CH3NH 3 + metabolism, but long-term uptake was dependent on its metabolism via glutamine synthetase (GS). The CH3NH 3 + was converted into methylglutamine which was not further metabolised. The addition of l-methionine-dl-sulphoximine (MSX), to inhibit GS, inhibited CH3NH 3 + metabolism, but did not affect the CH3NH 3 + transport system.NH 4 + , when added after the addition of 14CH3NH 3 + , caused the efflux of free CH3NH 3 + ; when added before 14CH3NH 3 + , NH 4 + inhibited its uptake indicating that both NH 4 + and CH3NH 3 + share a common transport system. Carbonylcyanide m-chlorophenylhydrazone and triphenyl-methylphosphonium both inhibited CH3NH 3 + accumulation indicating that the transport system was -dependent. At pH 7 and at an external CH3NH 3 + concentration of 30 mol dm-3, A. variabilis showed a 40-fold intracellular accumulation of CH3NH 3 + (internal concentration 1.4 mmol dm-3). Packets of the symbiotic cyanobacterium Anabaena azollae, directly isolated from the water fern Azolla caroliniana, also showed a -dependent NH 4 + transport system suggesting that the reduced inhibitory effect of NH 4 + on nitrogenase cannot be attributed to the absence of an NH 4 + transport system but is probably related to the reduced GS activity of the cyanobiont.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - membrane potential - pH transmembrane pH difference - TPMP+ triphenylmethylphosphonium  相似文献   

17.
Evidence for the existence of an energy-dependent urea permease was found for Alcaligenes eutrophus H16 and Klebsiella pneumoniae M5a1 by studying uptake of 14C-urea. Since intracellular urea was metabolized immediately, uptake did not result in formation of an urea pool. Evidence is based on observations that the in vivo urea uptake and in vitro urease activity differ significantly with respect to kinetic parameters, temperature optimum, pH optimum, response towards inhibitors and regulation. The K m for urea uptake was 15–20 times lower (38 M and 13 M urea for A. eutrophus and K. pneumoniae, respectively) than the K m of urease for urea (650 M and 280 M urea), the activity optimum for A. eutrophus was at pH 6.0 and 35°C for the uptake and pH 9.0 and 65°C for urease. Uptake but not urease activity in both organisms strongly decreased upon addition of inhibitors of energy metabolism, while in K. pneumoniae, potent inhibitors of urease (thiourea and hydroxyurea) did not affect the uptake process. Significant differences in the uptake rates were observed during growth with different nitrogen sources (ammonia, nitrate, urea) or in the absence of a nitrogen source; this suggested that a carrier is involved which is subject to nitrogen control. Some evidence for the presence of an energy-dependent uptake of urea was also obtained in Pseudomonas aeruginosa DSM 50071 and Providencia rettgeri DSM 1131, but not in Proteus vulgaris DSM 30118 and Bacillus pasteurii DSM 33.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide - DNP 2,4-dinitrophenole  相似文献   

18.
Hot phenol-water extractions were carried out of cells from 12 strains of the fast-growing rhizobia Rhizobium leguminosarum, Rhizobium phaseoli, Rhizobium trifolii and Rhizobium meliloti. Purified lipopolysaccharide preparations contain neutral sugars, hexosamines, 2-keto-3-deoxyoctonate and uronic acids. Glucose, galactose, mannose, rhamnose and fucose are present in the majority of the LPS-preparations, but in varying proportions. Heptose was only found in some of them. O-methylated sugars are present in small amounts is most preparations, the kind of sugar being characteristic for lipopolysaccharides from different species. The lipid A part of lipopolysaccharides from all strains examined has identical patterns of fatty acids, namely -OH-C14:0, -OH-C15:0 (anteiso branched), -OH-C16:0 and -OH-C18:0. Comparison of the total compositions of Rhizobium lipopolysaccharides shows many differences among different species as among strains of a single species. Nearly identical lipopolysaccharide compositions also exist among certain strains, which constitute the same chemotype and which are also immunologically related. In view of a possible role of surface carbohydrates of Rhizobium in the root nodule symbiosis, the specificity of the binding of legume lectins with exo- and lipopolysaccharides of Rhizobium is discussed.Non-Standard Abbreviations LPS lipopolysaccharide(s) - EPS exopolysaccharides(s) - cetavlon cetyltrimethylammoniumbromide - KDO 2-keto-3-deoxyoctonate - ECL equivalent chain length Part II on Surface Carbohydrates of Rhizobium  相似文献   

19.
Nitrogen-starved cells of Frankia strain HFPArl3 incorporated [13N]-labeled ammonium into glutamine serine (glutamate, alanine, aspartate), after five-minute radioisotope exposures. High initial endogenous pools of glutamate were reduced, while total glutamine increased, during short term NH inf4 sup+ incubation. Preincubation of cells in methionine sulfoximine (MSX) resulted in [13N]glutamine reduced by more than 80%, while [13N]glutamate and [13N]alanine levels increased. The results suggest that glutamine synthetase is the primary enzyme of ammonium assimilation, and that glutamate dehydrogenase and alanine dehydrogenase may also function in ammonium assimilation at low levels. Efflux of [13N]serine and lesser amounts of [13N]glutamine was detected from the Frankia cells. The identity of both Ser and Gln in the extracellular compartment was confirmed with gas chromatography/mass spectrometry. Serine efflux may be of significance in nitrogen transfer in Frankia.Abbreviations Pthr phosphothreonine - Aad -amino-adipate - MSX methionine sulfoximine  相似文献   

20.
In the aquatic liverwort Riccia fluitans, the uptake of 14C-labeled 3-O-methyl glucose (3-OMG) and membrane depolarization ( m ) caused by different hexoses has been studied as a function of time and concentration of hexose, K+ and H+, respectively. The rate of uptake of the non-metabolized 3-OMG shows two components: (A)A pH-dependent saturable uptake with a km value around 0.1 mM which saturates at 2.1 and 7.2 mol G DW -1 h-1 at pH 6.8 and 5.0, respectively; and (B) a pH-insensitive uptake component which increases linearly with the external 3-OMG concentration and does not saturate 4 mM. Hexoses rapidly depolarize the plasmalemma of the thallus cell and increase its electrical conductance. The maximal m was 60±2 mV, the concentrations (mM) for half-maximal m were 0.24 glucose, 0.32 galactose, 0.37 2-deoxy glucose, 0.38 3-OMG, 0.57 mannose, and 34 fructose. In terms of a hexose carrier model and an equivalent circuit for the hexose-induced depolarized state of the membrane, it is proposed that a hexose carrier operates either electrogenically in its protonated, pH-and voltage-sensitive state, or by transmembrane diffusion of its uncharged state.Symbols and Abbreviations m membrane potential (mV) - g m membrane (slope) conductance (Sm-2) - 3-OMG 3-O-methyl glucose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号