首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
Endothelial injuries, including cell pyroptosis, are ongoing inflammatory processes with key roles in atherosclerosis development. Our previous report showed that the chemokine CXCL12 and its receptor CXCR7 are associated with the proliferation and angiogenesis of endothelial cells. Nevertheless, the mechanism underlying these effects on atherosclerotic lesions, especially on endothelial dysfunction, remains unknown. Here, we demonstrated that CXCR7 was upregulated in human carotid atherosclerotic plaques, apolipoprotein E knockout (ApoE?/?) mice fed with a high‐fat diet (HFD), and oxidized lipopolysaccharide‐treated (ox‐LDL) human umbilical vein endothelial cells (HUVECs). Further, the activation of CXCR7 reversed ox‐LDL‐induced HUVEC dysfunction, such as migration, tube formation, and cell pyroptosis; all of these protective effects were alleviated by inhibition of CXCR7. The NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasomes were also elevated in human carotid atherosclerotic plaques, ApoE?/? mice fed with HFD, and ox‐LDL‐injured HUVECs by regulation of caspase‐1 and interleukin (IL)‐1β expression. The activation of CXCR7 by TC14012 led to a decrease in atherosclerotic lesions in ApoE?/? mice fed with HFD. TC14012 also inhibited the expression of the NLRP3 inflammasome signaling pathway in vivo. In conclusion, our study suggests that CXCR7 plays an important role in regulating NLRP3 inflammasome‐modulated pyroptosis in HUVECs, providing a potential novel therapy for atherosclerosis.  相似文献   

2.
Primary cilia are microtubule‐based structures present on most mammalian cells that are important for intercellular signaling. Cilia are present on a subset of endothelial cells where they project into the vessel lumen and are implicated as mechanical sensors of blood flow. To test the in vivo role of endothelial cilia, we conditionally deleted Ift88, a gene required for ciliogenesis, in endothelial cells of mice. We found that endothelial primary cilia were dispensable for mammalian vascular development. Cilia were not uniformly distributed in the mouse aorta, but were enriched at vascular branch points and sites of high curvature. These same sites are predisposed to the development of atherosclerotic plaques, prompting us to investigate whether cilia participate in atherosclerosis. Removing endothelial cilia increased atherosclerosis in Apoe?/? mice fed a high‐fat, high‐cholesterol diet, indicating that cilia protect against atherosclerosis. Removing endothelial cilia increased inflammatory gene expression and decreased eNOS activity, indicating that endothelial cilia inhibit pro‐atherosclerotic signaling in the aorta.  相似文献   

3.
Protein deglycase DJ-1 (DJ-1) is a multifunctional protein involved in various biological processes. However, it is unclear whether DJ-1 influences atherosclerosis development and plaque stability. Accordingly, we evaluated the influence of DJ-1 deletion on the progression of atherosclerosis and elucidate the underlying mechanisms. We examine the expression of DJ-1 in atherosclerotic plaques of human and mouse models which showed that DJ-1 expression was significantly decreased in human plaques compared with that in healthy vessels. Consistent with this, the DJ-1 levels were persistently reduced in atherosclerotic lesions of ApoE−/− mice with the increasing time fed by western diet. Furthermore, exposure of vascular smooth muscle cells (VSMCs) to oxidized low-density lipoprotein down-regulated DJ-1 in vitro. The canonical markers of plaque stability and VSMC phenotypes were evaluated in vivo and in vitro. DJ-1 deficiency in Apoe−/− mice promoted the progression of atherosclerosis and exaggerated plaque instability. Moreover, isolated VSMCs from Apoe−/−DJ-1−/− mice showed lower expression of contractile markers (α-smooth muscle actin and calponin) and higher expression of synthetic indicators (osteopontin, vimentin and tropoelastin) and Kruppel-like factor 4 (KLF4) by comparison with Apoe−/−DJ-1+/+ mice. Furthermore, genetic inhibition of KLF4 counteracted the adverse effects of DJ-1 deletion. Therefore, our results showed that DJ-1 deletion caused phenotype switching of VSMCs and exacerbated atherosclerotic plaque instability in a KLF4-dependent manner.  相似文献   

4.
During inbreeding of Japanese wild mice (Mus musculus molossinus), we established a strain of mice with severe cutaneous xanthomatous lesions. Since those mice showed high plasma cholesterol values, we named them spontaneously hyperlipidemic (SHL) mice; total cholesterol values of these mice (even when fed on conventional low-fat diet) are unusually high throughout the life span. The xanthomatous lesions appear in palms and distal extremities of forelimbs as early as 4 weeks after birth, and continue to expand to chest, abdomen, and face until the mice die before 14 months of age. Histological examination of these lesions revealed cholesterol crystal deposits, an infiltration of foam cells or macrophages, while that of the vascular system revealed atherosclerosis in the aortic sinus. Immunoblot and Northern blot analyses failed to detect apolipoprotein E (APOE) expression in these animals. Consistent with these findings, Southern blot analysis found disruption of the Apoe gene in SHL mice. Phenotypes of SHL mice, however, were distinct from those of Apoe tm1Unc (hereafter Apoe −/− ) mice, whose Apoe gene was disrupted by homologous recombination; hypercholesterolemia and xanthoma were more severe in SHL mice than in Apoe −/− mice, while atherosclerosis was milder in SHL mice. These distinctions suggest that there are modifier genes for the phenotypes. Alternatively, other gene(s), besides the Apoe gene, may be mutated in SHL mice. In either case, comparative genetic and molecular dissection of SHL mice will provide a good opportunity to understand the genetic basis for hyperlipidemia and atherosclerosis. Received: 2 October 1998 / Accepted: 2 December 1998  相似文献   

5.
Given the anti-inflammatory and protective role of probiotics in atherosclerosis and the regulatory role of micro RNA (miRNA) in endothelial cell (dys) functions, this study aimed to investigate the effect of Lactobacillus acidophilus (La) on cellular death and the expression of miRNA-21, 92a, 155, and 663 in human umbilical vein endothelial cell (HUVEC) induced by Escherichia coli lipopolysaccharide (Ec-LPS). LPS-treated and untreated HUVECs were cultured in the presence of different La conditions such as La-conditioned media (LaCM), La water extract (LaWE), La culture-filtered (LaFS) and unfiltered supernatants (LaUFS). After 24 h, apoptosis, necrosis and the levels of the mentioned miRNAs were measured using flow cytometry and real-time PCR methods, respectively. LaCM decreased apoptosis, necrosis and inflammatory miR-155 and conversely increased anti-apoptotic miR-21 in Ec-LPS-treated HUVECs. Association analysis revealed negative correlations between necrosis and the levels of miR-21, miR-92a, and miR-155. The beneficial effects of L. acidophilus on the ECs death and expression of atherosclerosis related miRNAs in these cells imply a new aspect of its regulation in cardiovascular diseases rather than previously described ones and suggest this probiotic bacterium as a candidate in the preventative therapy of atherosclerosis.  相似文献   

6.

Aim

We recently reported that glucose-dependent insulinotropic polypeptide (GIP) prevents the development of atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. GIP receptors (GIPRs) are found to be severely down-regulated in diabetic animals. We examined whether GIP can exert anti-atherogenic effects in diabetes.

Methods

Nondiabetic Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db mice were administered GIP (25 nmol/kg/day) or saline (vehicle) through osmotic mini-pumps for 4 weeks. The animals were assessed for aortic atherosclerosis and for oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages.

Results

Diabetic Apoe −/− mice of 21 weeks of age exhibited more advanced atherosclerosis than nondiabetic Apoe −/− mice of the same age. GIP infusion in diabetic Apoe −/− mice increased plasma total GIP levels by 4-fold without improving plasma insulin, glucose, or lipid profiles. GIP infusion significantly suppressed macrophage-driven atherosclerotic lesions, but this effect was abolished by co-infusions with [Pro3]GIP, a GIPR antagonist. Foam cell formation was stimulated by 3-fold in diabetic Apoe −/− mice compared with their nondiabetic counterparts, but this effect was halved by GIP infusion. GIP infusion also attenuated the foam cell formation in db/db mice. In vitro treatment with GIP (1 nM) reduced foam cell formation by 15% in macrophages from diabetic Apoe −/− mice, and this attenuating effect was weaker than that attained by the same treatment of macrophages from nondiabetic counterparts (35%). While GIPR expression was reduced by only about a half in macrophages from diabetic mice, it was reduced much more dramatically in pancreatic islets from the same animals. Incubation with high glucose (500 mg/dl) for 9–10 days markedly reduced GIPR expression in pancreatic islet cells, but not in macrophages.

Conclusions

Long-term infusion of GIP conferred significant anti-atherogenic effects in diabetic mice even though the GIPR expression in macrophages was mildly down-regulated in the diabetic state.  相似文献   

7.
Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis.  相似文献   

8.

Aim

Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.

Methods

We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.

Results

Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.

Conclusions

This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases.  相似文献   

9.
Accumulating studies have demonstrated that the dimethylarginine dimethylaminohydrolase/asymmetric dimethylarginine (DDAH/ADMA) system is a novel pathway for modulating nitric oxide (NO) production. The aim of this study was to investigate whether the protective effect of high density lipoprotein (HDL) on endothelial NO production was related to its effect on DDAH/ADMA pathway. Human umbilical vein endothelial cells (HUVECs) were prior exposed to HDL (10, 50, or 100 μg/ml) for 1 h, and then incubated with oxidized low density lipoprotein (ox-LDL) (100 μg/ml) for 24 h. The cultured medium was collected for measuring the concentration of NO and ADMA. The cells were collected for measuring the mRNA and protein expression of DDAH-II as well as DDAH activity. HUVECs treated with ox-LDL (100 μg/ml) for 24 h significantly decreased the concentration of NO, the mRNA and protein expression of DDAH-II as well as DDAH activity and increased the level of ADMA. Pretreatment with HDL (10, 50, or 100 μg/ml) could counteract these changes induced by ox-LDL (100 μg/ml). HDL significantly increased the attenuated endothelial cell NO production induced by ox-LDL, which was attributed to its effect on DDAH/ADMA pathway.  相似文献   

10.
We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe−/− mouse model. We have also shown sensitization of Apoe−/− mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr−/− mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr−/− mice, suggesting future courses of experimentation for the characterization of such epitopes.  相似文献   

11.

Aim

Several recent reports have revealed that dipeptidyl peptidase (DPP)-4 inhibitors have suppressive effects on atherosclerosis in apolipoprotein E-null (Apoe −/−) mice. It remains to be seen, however, whether this effect stems from increased levels of the two active incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP).

Methods

Nontreated Apoe −/− mice, streptozotocin-induced diabetic Apoe −/− mice, and db/db diabetic mice were administered the DPP-4 inhibitor vildagliptin in drinking water and co-infused with either saline, the GLP-1 receptor blocker, exendin(9–39), the GIP receptor blocker, (Pro3)GIP, or both via osmotic minipumps for 4 weeks. Aortic atherosclerosis and oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages were determined.

Results

Vildagliptin increased plasma GLP-1 and GIP levels without affecting food intake, body weight, blood pressure, or plasma lipid profile in any of the animals tested, though it reduced HbA1c in the diabetic mice. Diabetic Apoe −/− mice exhibited further-progressed atherosclerotic lesions and foam cell formation compared with nondiabetic counterparts. Nondiabetic and diabetic Apoe −/− mice showed a comparable response to vildagliptin, namely, remarkable suppression of atherosclerotic lesions with macrophage accumulation and foam cell formation in peritoneal macrophages. Exendin(9–39) or (Pro3)GIP partially attenuated the vildagliptin-induced suppression of atherosclerosis. The two blockers in combination abolished the anti-atherosclerotic effect of vildagliptin in nondiabetic mice but only partly attenuated it in diabetic mice. Vildagliptin suppressed macrophage foam cell formation in nondiabetic and diabetic mice, and this suppressive effect was abolished by infusions with exendin(9–39)+(Pro3)GIP. Incubation of DPP-4 or vildagliptin in vitro had no effect on macrophage foam cell formation.

Conclusions

Vildagliptin confers a substantial anti-atherosclerotic effect in both nondiabetic and diabetic mice, mainly via the action of the two incretins. However, the partial attenuation of atherosclerotic lesions by the dual incretin receptor antagonists in diabetic mice implies that vildagliptin confers a partial anti-atherogenic effect beyond that from the incretins.  相似文献   

12.
The effects of long-term nitrate therapy are compromised due to protein S-Nitrosylation, which is mediated by nitric oxide (NO). This study is to determine the role of Akt S-Nitrosylation in the recovery of heart functions after ischaemia. In recombinant Akt protein and in HEK293 cells, NO donor decreased Akt activity and induced Akt S-Nitrosylation, but was abolished if Akt protein was mutated by replacing cysteine 296/344 with alanine (Akt-C296/344A). In endothelial cells, NO induced Akt S-Nitrosylation, reduced Akt activity and damaged multiple cellular functions including proliferation, migration and tube formation. These alterations were ablated if cells expressed Akt-C296/344A mutant. In Apoe−/− mice, nitroglycerine infusion increased both Akt S-Nitrosylation and infarct size, reduced Akt activity and capillary density, and delayed the recovery of cardiac function in ischaemic hearts, compared with mice infused with vehicle. Importantly, these in vivo effects of nitroglycerine in Apoe−/− mice were remarkably prevented by adenovirus-mediated enforced expression of Akt-C296/344A mutant. In conclusion, long-term usage of organic nitrate may inactivate Akt to delay ischaemia-induced revascularization and the recovery of cardiac function through NO-mediated S-Nitrosylation.  相似文献   

13.
Direct associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipragliflozin (1.0 mg/kg/day) for 4-weeks to apolipoprotein E-null (Apoe −/−) mice, streptozotocin-induced diabetic Apoe −/− mice, and diabetic db/db mice. We then determined aortic atherosclerosis, oxidized low-density lipoprotein (LDL)-induced foam cell formation, and related gene expression in exudate peritoneal macrophages. Dapagliflozin substantially decreased glycated hemoglobin (HbA1c) and glucose tolerance without affecting body weight, blood pressure, plasma insulin, and lipids in diabetic Apoe −/− mice. Aortic atherosclerotic lesions, atheromatous plaque size, and macrophage infiltration in the aortic root increased in diabetic Apoe −/− mice; dapagliflozin attenuated these changes by 33%, 27%, and 20%, respectively. Atherosclerotic lesions or foam cell formation highly correlated with HbA1c. Dapagliflozin did not affect atherosclerosis or plasma parameters in non-diabetic Apoe −/− mice. In db/db mice, foam cell formation increased by 4-fold compared with C57/BL6 mice, whereas ipragliflozin decreased it by 31%. Foam cell formation exhibited a strong correlation with HbA1c. Gene expression of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 was upregulated, whereas that of ATP-binding cassette transporter A1 was downregulated in the peritoneal macrophages of both types of diabetic mice. SGLT2i normalized these gene expressions. Our study is the first to demonstrate that SGLT2i exerts anti-atherogenic effects by pure glucose lowering independent of insulin action in diabetic mice through suppressing macrophage foam cell formation, suggesting that foam cell formation is highly sensitive to glycemia ex vivo.  相似文献   

14.
The damage of vascular endothelial cells induced by oxidative stress plays an important role in the pathogenesis of atherosclerosis. Dihydromyricetin (DMY) is considered as a natural antioxidant. However, the mechanism of DMY on endothelial cell injury induced by oxidative stress remains unclear. In this study, we found that DMY could reduce the oxidative damage of HUVECs induced by sodium nitroprusside (SNP), HUVECs pre‐treated with DMY suppressed SNP‐induced apoptosis by reduced ROS overproduction of intracellular, decreased MDA level and elevated the superoxide dismutase activity. Meanwhile, we found that DMY could promote the expression of phosphorylated FoxO3a and Akt, and affect the nuclear localization of FoxO3a, when treated with the PI3K inhibitor LY294002, the effect of DMY was blocked. These data suggest that DMY protects HUVECs from oxidative stress by activating PI3K/Akt/FoxO3a signalling pathway. Therefore, DMY may have great therapeutic potential as a new drug for atherosclerosis.  相似文献   

15.
16.
Atherosclerosis is an inflammatory disease of the arterial wall, which involves endothelial cells and immune cells. Endothelial dysfunction has been considered an important step in the initiation of the disease. TIPE1 is a newly identified protein of the TIPE family, and plays a vital role in inflammation and tumorigenesis. However, its role in atherogenesis remains unclear. In this study, we demonstrated that TIPE1 promoted atherogenesis by inducing endothelial dysfunction. When human umbilical vein endothelial cells (HUVECs) were exposed to oxidative stress, the level of TIPE1 was significantly up-regulated, and the ROS generation markedly increased in TIPE1 over-expressing HUVECs. As a result, the growth of HUVECs was inhibited, and the apoptosis was enhanced. However, the cell contact ability between HUVECs and THP-1 cells were augmented due to the up-regulation of adhesion molecules such as E-selectin and ICAM-1 induced by TIPE1 overexpression. Importantly, ApoE/ mice injected with TIPE1 recombinant lentivirus developed significantly severe atherosclerosis accompanied by hyperglycemia, hypercholesterolemia and increased white blood count. These findings indicated that excessive ROS induced by the overexpression of TIPE1 in endothelial cells accelerated the process of atherogenesis.  相似文献   

17.
High plasma cholesterol levels are found in several metabolic disorders and their reductions are advocated to reduce the risk of atherosclerosis. A way to lower plasma lipids is to curtail lipoprotein production; however, this is associated with steatosis. We previously showed that microRNA (miR)-30c lowers diet-induced hypercholesterolemia and atherosclerosis in C57BL/6J and Apoe−/− mice. Here, we tested the effect of miR-30c on plasma lipids, transaminases, and hepatic lipids in different mouse models. Hepatic delivery of miR-30c to chow-fed leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) hypercholesterolemic and hyperglycemic mice reduced cholesterol in total plasma and VLDL/LDL by ∼28% and ∼25%, respectively, without affecting triglyceride and glucose levels. And these mice had lower plasma transaminases and creatine kinase activities than controls. Moreover, miR-30c significantly lowered plasma cholesterol and atherosclerosis in Western diet-fed Ldlr−/− mice with no effect on plasma triglyceride, glucose, and transaminases. In these studies, hepatic lipids were similar in control and miR-30c-injected mice. Mechanistic studies showed that miR-30c reduced hepatic microsomal triglyceride transfer protein activity and lipid synthesis. Thus miR-30c reduced plasma cholesterol in several diet-induced and diabetic hypercholesterolemic mice. We speculate that miR-30c may be beneficial in lowering plasma cholesterol in different metabolic disorders independent of the origin of hypercholesterolemia.  相似文献   

18.
NO is an important regulator of cardiovascular remodelling and function. ADMA, an endogenous L-arginine analogue, reduces NO production by inhibiting the activity of NOS. ADMA levels in turn, are regulated by DDAH, which metabolises ADMA. High levels of ADMA and dysregulated DDAH activity are risk factors for cardiovascular disease and morbidity. To investigate this link, the DDAH I null mouse has been recently generated and has a lethal phenotype. Studies on vascular function in the DDAH I heterozygous knockout mouse, which is viable, demonstrates a causal link between reduced DDAH I activity, increased ADMA levels and reduced NO signalling and vascular dysfunction. In another study, detailed in vitro analyses reveal that the DDAH/ADMA pathway critically regulates endothelial cell motility and angiogenesis and establishes some of the molecular mechanisms involved. These studies highlight the importance of DDAH and ADMA in regulating NO dependent vascular homeostasis.Key words: asymmetric dimethylarginine (ADMA), dimethylarginine dimethylaminohydrolase (DDAH), nitric oxide (NO), angiogenesis, endothelial, motilityNO is generated from L-arginine by NOS; a process which is competitively inhibited by the arginine analogues ADMA and L-NMMA. These endogenous factors are products of proteolytic degradation of methylated proteins. ADMA and L-NMMA are metabolised by DDAH I and II, thereby enhancing NO generation. Of relevance to vascular biology, dysfunctional DDAH activity and ADMA accumulation are risk factors for cardiovascular disorders, including hypertension, artherosclerosis, diabetes, insulin resistance, hypercholesterolemia and homocysteinemia (reviewed in ref. 1).The DDAH I null mouse was generated recently by Leiper et al.2 to facilitate investigation of the role of the DDAH/ADMA pathway in the pathology of cardiovascular disorders. While the absence of DDAH I causes a lethal phenotype, heterozygotes (HT) did not display any obvious abnormalities. However, ADMA levels were raised in tissues and plasma, in association with raised blood pressure and systemic vascular resistance, and reduced cardiac output and heart rate. Synthetic DDAH I inhibitors were designed by the authors and were shown by crystallography to bind to the active site of the enzyme and induce local distortions at this region. Confirming that loss of DDAH I was responsible for ADMA accumulation, these inhibitors enhanced ADMA levels in wildtype mice, and resulted in cardiovascular changes similar to those seen in the HT background. Inhibitor treatment also promoted ADMA release from wildtype blood vessels maintained ex vivo, indicating that the DDAH/ADMA pathway is directly responsible for maintaining cardiovascular function in this model.Evidence was also presented for a causal link between ADMA metabolism and reduced NO levels. In an ex vivo model, aortic rings from HT mice displayed enhanced phenylephrine-induced contraction and reduced acetylcholine-induced relaxation, while DDAH I inhibitors induced similar responses in aortic rings from wildtype mice; indicative of reduced levels of endothelial-derived NO. Further demonstrating an ADMA/NO-dependent mechanism, exogenous L-arginine restored a normal response to these vasomodulators in the HT model (by competing with ADMA for interaction with NOS). Similarly, cultured endothelial cells from HT vessels produced more ADMA and less NO than cells from wildtype vessels, and DDAH I inhibitors induced a similar phenotype in wildtype endothelial cells. The significance of DDAH I/ADMA and NO in vascular disease was tested in a disease model. Endotoxic shock was induced in rats by intravenous infusion of LPS, which induces excess NO production, resulting in systemic hypotension. After blood pressure had fallen by 20%, infusion of a DDAH I inhibitor was able to rapidly stabilise blood pressure, in accordance with inhibition of NO production through reduced ADMA metabolism. Thus, when DDAH I is reduced, ADMA is increased and endogenous NO inhibited, resulting in altered vascular function.Another related study investigated a mechanistic understanding of the role of ADMA/DDAH/NO in angiogenesis.3 The authors demonstrated that ADMA regulates endothelial cell motility and phenotype by inhibiting NO-dependent changes in activity of Rho-GTPases; key mediators of cytoskeletal dynamics and motility. Treatment of pulmonary artery endothelial cells with ADMA enhanced stress fibres and focal adhesion formation in conjunction with increased activity of RhoA in pull-down assays. In accordance with these observations, motility, tracked by time-lapse microscopy, was inhibited by ADMA treatment, and ADMA effects were reversed by a Rho kinase inhibitor (Y-27632) or by adenoviral-mediated gene transfer of a dominant negative RhoA mutant. RhoA activity is mediated by PKG, which mediates RhoA-Ser188 phosphorylation, preventing RhoA localization to the membrane and inhibiting its activity.4 In further support of a RhoA-dependent mechanism, ADMA reduced phosphorylation at RhoA-Ser188, while a PKG activator was also able to revert ADMA effects on motility. Further, a non-phosphorylatable mutant of RhoA, Ala188RhoA, or a specific PKG inhibitor, each inhibited cell motility to a similar level as ADMA treatment alone. Inhibition of NO production and endothelial cell motility by ADMA was also reversed by a NO donor, SNAP, or by DDAH I or II overexpression via adenovirus-mediated gene transfer. Thus, reduction of NO/PKG levels by ADMA reduces RhoA phosphorylation at Ser188 resulting in enhancement of RhoA activity and inhibition of cell motility.The significance of these molecular mechanisms to angiogenesis was demonstrated using endothelial cells and aortic ring explants from HT DDAH I and wildtype mice. HT endothelial cells, which secrete more ADMA and produce less NO than their wildtype counterparts, exhibit enhanced RhoA activity and stress fibre formation in conjunction with reduced motility. Reduced sprouting from ex vivo aortic rings was also observed in the HT model, which was mimicked by addition of exogenous ADMA in the wildtype background. These data demonstrate that in vivo, DDAH/ADMA levels are likely to play a key role in control of endothelial cell motility and angiogenesis by regulating NO production.  相似文献   

19.
Neferine, extracted from the seed embryo of Nelumbo nucifera Gaertn., has multiple cardiovascular pharmacological effects. The dimethylarginine dimethylaminohydrolase (DDAH) - asymmetric dimethylarginine (ADMA) system is a novel pathway for modulating nitric oxide (NO) production. The aim of this study was to investigate whether the protective effect of neferine on endothelial NO production was related to the DDAH-ADMA pathway. Human umbilical vein endothelial cells (HUVECs) were first exposed to neferine (0.1, 1.0, or 10.0?μmol/L) for 1?h, and then incubated with lysophosphatidylcholine (LPC; 10?μg/mL) in the presence of neferine for 24?h. The medium was collected for measuring the levels of NO, maleic dialdehyde (MDA), as well as ADMA. The endothelial cells were collected for measuring DDAH activity and the level of reactive oxygen species (ROS). LPC significantly decreased NO concentration and DDAH activity and increased the levels of ADMA, ROS, and MDA. Neferine could partially counteract the changes induced by LPC. These findings suggested that neferine could modulate the DDAH-ADMA pathway via its antioxidant properties, which was involved in its beneficial effect on endothelial NO production.  相似文献   

20.
Circulating exosomes delivering microRNAs are involved in the occurrence and development of cardiovascular diseases. How are the circulating exosomes involved in the repair of endothelial injury in acute myocardial infarction (AMI) convalescence (3-7 days) was still not clear. In this study, circulating exosomes from AMI patients (AMI-Exo) and healthy controls (Normal-Exo) were extracted. In vitro and in vivo, our study showed that circulating exosomes protected endothelial cells (HUVECs) from oxidative stress damage; meanwhile, Normal-Exo showed better protective effects. Through the application of related inhibitors, we found that circulating exosomes shuttled between HUVECs via dynamin. Microarry analysis and qRT-PCR of circulating exosomes showed higher expression of miR-193a-5p in Normal-Exo. Our study showed that miR-193a-5p was the key factor on protecting endothelial cells in vitro and in vivo. Bioinformatics analyses found that activin A receptor type I (ACVR1) was the potential downstream target of miR-193a-5p, which was confirmed by ACVR1 expression and dual-luciferase report. Inhibitor of ACVR1 showed similar protective effects as miR-193a-5p. While overexpression of ACVR1 could attenuate protective effects of miR-193a-5p. To sum up, these findings suggest that circulating exosomes could shuttle between cells through dynamin and deliver miR-193a-5p to protect endothelial cells from oxidative stress damage via ACVR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号