首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
实地测定了黄土高原半干旱区固原不同生长年限苜蓿草地和连作8a苜蓿草地翻耕轮作不同年限粮食作物后深层土壤水分特征,分析了苜蓿草地土壤干燥化特征和粮草轮作对土壤水分的恢复效应.结果表明:(1)苜蓿连作1a、5a、8a和12a等4类苜蓿草地0~1000cm土层平均土壤湿度值为6.6%,平均土壤水分过耗量702.8mm,平均土壤干燥化速率147.1mm/a,达到强烈干燥化程度,苜蓿连作5a土壤干层深度超过1000cm,苜蓿连作8a土壤干层深度超过1360cm,苜蓿草地合理利用年限为7a.(2)连作8a苜蓿草地翻耕并轮作4~7a和25a粮食作物等5类粮田0~1000cm土层土壤湿度介于6.74%~11.95%,土壤贮水量恢复值介于210.6~887.3mm,平均土壤水分恢复速率为80.8mm/a.轮作6a后粮田土壤干层轻度恢复程度以上深度达到1000cm.通过粮草轮作使苜蓿草地土壤湿度恢复到当地土壤稳定湿度需要13a以上.黄土高原半干旱区适宜的粮草轮作模式为:7a苜蓿→13a粮食作物.  相似文献   

2.
以各类作物农田水分为对照,连续两年对宁南山区不同生长年限苜蓿深层土壤水分以及10年生苜蓿地耕翻后轮作不同年份作物农田的水分进行了测定.结果表明,随着苜蓿生长年限的增加,干层深度与厚度先增加后减小.3年生苜蓿干层深度为720cm,6年生干层最深可达1000cm以下,10年生干层深度为920cm,3~12年生苜蓿地0~700cm土层基本上均属于土壤干层范围.苜蓿地0~800cm土壤湿度随生长年限增加而降低,2004年测定的4、7年生和12年生苜蓿地0~700cm土层平均含水率分别为5.30%、5.22%和5.01%;2005年测定的3、6年生和10年生苜蓿地0~800cm土层湿度分别为6.26%、5.60%和5.27%;而800~1000cm土层湿度在一定年限后有恢复趋势.300cm为苜蓿地降水下渗的最大临界深度,300cm以下土壤干层一旦形成,将长期存在,7~12年生苜蓿300~700cm土层湿度仅维持在4.0%左右.苜蓿地和农田的土壤干层厚度与湿度有较大差异,草粮轮作可使苜蓿土壤干层水分基本恢复到农田湿度,而且轮作年份越长,土壤各层次水分恢复效果越好,10年生苜蓿轮作18年后土壤水分基本恢复到农田状态.  相似文献   

3.
咸阳地区近年苹果林地土壤含水量动态变化   总被引:2,自引:0,他引:2       下载免费PDF全文
赵景波  周旗  陈宝群  杜娟  王长燕 《生态学报》2011,31(18):5291-5298
利用人力钻采样法和烘干称重法, 研究了咸阳地区2002-2008年间苹果林地6 m深度范围土壤含水量的动态变化、土壤干层的等级、土壤干层水分恢复、动力机制与消耗过程。资料表明, 咸阳地区干旱年苹果林地土壤含水量较低, 发育了长期性土壤干层。2003和2007丰水年苹果林地土壤干层中的水分得到了显著恢复, 经过当年的水分补给, 土壤干层已经消失。丰水年土层中重力水含量较高, 并能到达2 m深度以下。持续时间较长的重力水的存在是土壤干层水分恢复的驱动力, 但干层水分恢复的直接动力是薄膜水的水膜压力。在年降水量800 mm或更多的条件下, 不论黄土厚度有多大, 土层水分完全能够满足人工林生长的需要。咸阳地区干旱年苹果林地土壤水分不足, 土壤水分收入量小于支出量, 土壤水分为负平衡, 没有剩余的水分通过入渗补给地下水;丰水年苹果林地土壤水分充足, 土壤水分收入量大于支出量, 土壤水分为正平衡, 有剩余的水分通过入渗补给地下水。在年降水量为800 mm左右的丰水年, 该区补给的土壤水分可维持苹果林地在3 a内不会出现长期性干层, 3 a之后一般还会出现长期性土壤干层。  相似文献   

4.
黄土高原半干旱偏旱区草粮轮作田土壤水分恢复效应模拟   总被引:1,自引:0,他引:1  
采用实地调查和EPIC模型相结合的方法,模拟研究了黄土高原半干旱偏旱区不同草粮轮作模式的土壤水分恢复效应.结果表明:多年生苜蓿地和苜蓿翻耕后种植粮食作物农田0~10 m土层土壤湿度调查值与模拟值间的相关系数均超过0.9(P<0.01),相对均方根误差在0.05~0.16,相对误差均低于10%;模拟与实测的土壤湿度剖面分布变化趋势一致.在黄土高原半干旱偏旱区,苜蓿地深层土壤干层恢复难度较大,在种植苜蓿期间应避免8~10 m土层土壤湿度降到5.7%以下.苜蓿地适宜种植年限为4~6 a,最长不应超过8 a.苜蓿翻耕后适宜采用马铃薯→马铃薯→春小麦轮作模式进行土壤水分恢复,32~33 a后可以再次种植苜蓿.  相似文献   

5.
黄土高原北部人工灌草植被土壤干燥化过程研究   总被引:7,自引:0,他引:7  
刘丙霞  任健  邵明安  贾小旭 《生态学报》2020,40(11):3795-3803
黄土高原北部水蚀风蚀交错区是典型的生态脆弱区,人工灌草植被土壤干燥化发生频繁。土壤干化层的形成影响生物小循环并削弱水文大循环,严重制约植被建设成效和区域生态稳定。为阐明人工灌草植被土壤干燥化过程,并确定适宜的种植年限,选择该区典型人工灌草植被—柠条和苜蓿为研究对象,分析两种植被土壤水分和地上生物量随生长年限的变化特征。结果表明:2—8年生柠条和1—7年生苜蓿对剖面土壤水分消耗强烈,并随生长年限呈快速下降趋势,9—12年生柠条和8—11年生苜蓿1.0—4.0 m剖面含水量分别降低至8.2%—9.0%和8.5%—10.5%之间,并处于相对稳定状态。4—5年生柠条地1—1.4 m开始产生干层,6年生柠条地干层深度达2.4 m,干层厚度为1.4 m;9—12年生柠条地干层深度超过4.0 m。2—4年生苜蓿地无干燥化;5年生苜蓿生长季末土壤干层深度达3.6 m,干层厚度为2.6 m,且7年生以后土壤干层的深度超过4.0 m。因此,为调控土壤干层,减少深层土壤干化的发生,建议柠条和苜蓿的生长年限分别不要超过6年和5年,其对应的地上最大干生物量分别为5050 kg/hm~2和1980 kg/hm~2。研究结果可为黄土高原北部生态脆弱区人工灌草植被管理与土壤干层调控提供科学依据。  相似文献   

6.
黄土高原半湿润区苜蓿草地土壤干层形成及水分恢复   总被引:6,自引:0,他引:6  
研究了黄土高原地区不同生长年限苜蓿草地0~1000 cm土层土壤水分消耗规律.结果表明,荒地与苜蓿草地土壤干层出现的区域及发生的程度不同:荒地在80~100 cm土层深度,出现轻度干层;生长年限低于8a(含8a)的苜蓿草地,在250~350 cm土层出现轻度干层,生长年限超过8a,出现中度干层,干层范围延至500 cm土层以下.苜蓿生长超过18a,0~200 cm上层土壤水分开始恢复,年均恢复1.49%;但在200~1000 cm土壤深层,18、26年生苜蓿草地土壤含水量仅为10.20%,深层土壤通体干化,水分难以恢复.  相似文献   

7.
黄土丘陵区沙打旺草地土壤水分过耗与恢复   总被引:14,自引:3,他引:11  
程积民  万惠娥  王静  雍绍萍 《生态学报》2004,24(12):2979-2983
研究了黄土丘陵区沙打旺 (Astragalusadsurgens)草地土壤水分的动态规律和恢复过程及人为调控土壤水分的效果。结果表明 :沙打旺在该区生长年限为 6~ 7a,生物量形成的高峰期在第 3~ 4年 ,之后土壤水分大量亏缺 ,生物量逐年下降 ,第 6年生物量和水分均下降到最低点。同时土壤水分的消耗深度与根系的分布相一致 ,土壤干层主要集中在根系分布的密集区 0 .3~0 .8m。随着沙打旺生长年限的延长及根系的下扎 ,土壤干层逐渐加深 ,3~ 6年生沙打旺草地土壤干层平均厚度为 2 .3m;土壤水分要自然恢复到种植前的含水量需要 6~ 7a;通过水平阶和水平沟整地进行人工调控 ,土壤水分比自然恢复可提前 2~ 3a,一般需要 4~ 5 a的时间即可恢复正常  相似文献   

8.
黄土塬区3种豆科牧草对土壤水分的消耗利用研究   总被引:4,自引:0,他引:4  
在田间完全旱作条件下采用3个密度和2种播种方式观察了3种多年生豆科牧草生长第2年对土壤水分的消耗利用情况。结果表明:苜蓿主要耗水深度在2~3 m,最深可达5 m,其中、高密度处理3 m以上土壤水分含量都在稳定田间持水量之下,已经开始形成土壤下伏干层;沙打旺耗水深度在0~2 m,最低含水量(11.61%)处于80~100 cm,在雨季可以恢复到稳定田间持水量之上;达乌里胡枝子主要耗水深度在1 m以上,最低含水量也在稳定田间持水量之上。单播沙打旺、苜蓿和达乌里胡枝子全生长期内对土壤水分的消耗分别为249.9、180.2和136.6 mm,水分利用效率分别是29.39、26.04和8.91 kg.mm-1.hm-2。混播、加大播种密度都会增加3种牧草土壤水分消耗,降低土壤储水量,提高干草产量和水分利用效率,但影响程度因牧草种类、播种方式以及不同的生长时段而异。  相似文献   

9.
为了揭示希拉穆仁草原土壤含水量, 水分存在形式, 水分有效性, 水循环和土壤干层等问题, 对该区不同地形草地进行了打钻取样, 对含水量及粒度进行测定与分析。结果显示: 研究区多数土壤剖面中含水量变化在2%-10%之间, 平均含水量多在3%-6%之间。高地采样区土壤水分垂向变化波动较大, 变化趋势不明显; 平地采样区土壤上中部含水量多于下部。研究区土壤水分大部分处于难效水状态, 土壤水分对植被生长具有明显的抑制作用, 但平地采样区在剖面上部0-0.5 m的平均含水量较高地采样区略多, 表明平地采样区植被生长受到土壤水分的胁迫性相对较小。研究区普遍有干层发育且等级较高, 干层分布接近地表。其中, 高地采样区剖面0-0.5 m全部为重度干层, 下部有轻度干层和中度干层发育; 平地采样区几乎全部为重度干层。该区春季5月份土壤水分几乎都以含量很低的薄膜水形式存在, 大气降水被蒸发与蒸腾等全部消耗, 没有剩余水分补给地下水。综上指示该区土壤水分为明显的负平衡, 水循环呈现土壤-植物-大气的水分循环模式, 属于不完整的水分循环类型。  相似文献   

10.
黄土高原退耕还林(草)工程实施20年来,长期苹果种植导致了普遍的土壤干层和大量的硝态氮累积,严重制约了农业和区域经济可持续发展。因此,明确不同树龄苹果园改种粮食作物后对深层土壤干层恢复(土壤水分变化)、土壤硝态氮累积与运移的影响,对于黄土高原土壤质量改善和农业可持续发展具有重要意义。以渭北旱塬为研究区,选取10、15、20、30 a树龄的苹果园以及对应树龄苹果园改种为2、5 a和6 a粮食作物为研究对象,通过对比分析各样地0—10 m剖面的土壤含水量、土壤储水量和硝态氮含量的差异,基于空间换时间的方法定量评估苹果园改种为粮食作物后对于深层土壤水氮的影响。结果表明:(1)不同林龄苹果园改种粮食作物后土壤水分迅速恢复,在2年之内均可恢复到7.0 m左右深度。(2)改种后土壤储水量对于改种后土壤硝态氮累积量的直接影响最显著,不同林龄苹果园改种粮食作物后,土壤剖面中硝态氮随着土壤水分的恢复发生了不同程度的淋失。改种前苹果园种植年限对于改种后土壤硝态氮累积量起决定性作用,改种前林龄越长,改种后硝态氮累积量越大、淋失深度越浅。(3)土壤累积硝态氮的淋失滞后于土壤水分的向下运动。可见,不同林龄苹果园...  相似文献   

11.
半干旱区人工林草地土壤旱化与土壤水分植被承载力   总被引:74,自引:9,他引:74  
郭忠升  邵明安 《生态学报》2003,23(8):1640-1647
近年来在黄土高原地区多年生林草地。出现了以土壤旱化为主要特征的土壤退化现象。退化土壤反过来影响植物的生长和发育,最终将导致植物群落衰败和生态系统的退化,从而影响到林草植被的长期稳定,经济效益和生态效益的持续稳定发挥,这已成为当前林草植被建设的重大问题之一。分析了土壤旱化现象与土壤干层的关系,探讨了土壤干层的划分标准。认为防止土壤旱化的主要措施就是控制林草地密度和生产力,而控制林草地密度和生产力的理论依据就是土地植被承载力。在黄土高原大部分地区植物吸收和利用的土壤水分主要依靠当地的天然降水。土壤水分是限制植物生长的决定因子,该类地区土地植被承载力实质上为土壤水分的植被承载力。作者定义土壤水分植被承载力为土壤水分承载植物的最大负荷。它是指在较长时期内,在现有的条件下,当植物根系可吸收和利用土层范围内土壤水分消耗量等于或小于土壤水分补给量时,所能维持特定植物群落健康生长的最大密度。探讨了土壤水分植被承载力的确定方法和影响因素,认为凡是影响林草地土壤水分的补给和消耗,植物群落生长发育和植物水分利用效率的因素,包括地理位置、地形、气候、植被类型及其发育阶段,抚育管理措施都影响土壤水分植被承载力数值。开展土壤水分植被承载力研究对于林草地合理经营与管理具有重要意义。  相似文献   

12.
黄土丘陵沟壑区森林生态系统生态化学计量特征   总被引:10,自引:7,他引:3       下载免费PDF全文
赵一娉  曹扬  陈云明  彭守璋 《生态学报》2017,37(16):5451-5460
为了阐明黄土丘陵沟壑区森林生态系统植物与土壤之间的养分循环关系,明确叶片与乔木层整体生态化学计量特征差异性,采用野外调查与室内分析相结合的方法对研究区内主要森林生态系统不同乔木器官和土壤C、N、P含量进行了测定,分析了叶片、乔木层和土壤化学计量特征及之间的关系。结果表明:研究区内森林生态系统乔木层平均C、N、P含量均显著低于叶片水平,表层土壤(0—10 cm)C、N含量以及C∶P、N∶P值均显著高于土壤(0—100 cm)平均值;叶片与乔木层及二者与土壤间的生态化学计量特征关系不同;乔木层平均C含量与降水呈显著正相关,乔木层平均P含量仅与海拔呈显著正相关,影响本地区植物生长状态的主要因素是降水。土壤平均C、N含量仅受土壤容重的影响,土壤平均P含量主要受土壤容重、温度和降水的影响。研究结果可以为黄土丘陵沟壑区人工林的建设和管理提供理论依据。  相似文献   

13.
黄土高塬沟壑区草地沟头立壁土壤抗冲性特征   总被引:1,自引:0,他引:1  
黄土高原植被恢复使沟头立璧土壤侵蚀过程发生显著变化。为明确黄土高塬沟壑区草地沟头立壁土壤抗冲性特征及其影响因素,以裸地为对照,利用室内原状土槽冲刷试验研究了草地沟头立壁0~1 m不同土层(0~10、10~20、20~40、40~60、60~80、80~100 cm)土壤理化性质和抗冲性特征。结果表明: 草地和裸地沟头土壤水稳性团聚体含量和粘聚力随土层加深均呈减小趋势。裸地沟头土壤有机质含量、土壤抗冲系数随土层深度的增加呈减小趋势,而草地沟头土壤有机质含量、土壤抗冲系数随土层加深先增加后减小,且均在10~20 cm土层达到最大值(24.30 g·kg-1和58.86 L·g-1),草地各土层土壤抗冲系数是裸地的1.7~9.3倍。沟头土壤抗冲性与土壤有机质含量、水稳性团聚体含量、黏聚力和植物根长密度呈极显著相关,其中与土壤有机质含量(r=0.98)的关系最密切。该研究可为黄土高塬沟壑区沟头溯源侵蚀机理的研究提供基础数据,并为有效防治该区域水土流失提供科学依据。  相似文献   

14.
黄土高原水土保持林对土壤水分的影响   总被引:8,自引:0,他引:8  
张建军  李慧敏  徐佳佳 《生态学报》2011,31(23):7056-7066
黄土高原植被恢复的限制因素主要是土壤水分,植被与土壤水分关系的研究对黄土高原植被恢复具有重要意义.2008年7月1日至2009年10月31日间采用EnviroSMART土壤水分定位监测系统以每30min监测1次的频度,对晋西黄土区刺槐人工林地、油松人工林地、次生林地的土壤水分变化进行了研究.研究得出:次生林地0-150 cm土层中平均蓄水量为331.95mm,刺槐人工林地为233.85 mm,有整地措施的油松人工林地为314.85mm,刺槐人工林比次生林多消耗的98.10mm土壤水分主要来源于80 cm以下土层.次生林主要消耗0-80 cm土层的水分,而人工林不但对0-80 cm土层水分的消耗量大于次生林,对深层土壤的消耗也较次生林大,这将有可能导致人工林地深层土壤的“干化”.在土壤水分减少期(11-1月)刺槐人工林土壤水分的日均损耗量为0.86mm、油松人工林为0.82 mm、次生林为0.84 mm.土壤水分缓慢恢复期(2-5月)刺槐人工林地土壤水分的恢复速度0.90mm/d,油松人工林地为0.53 mm/d、次生林地为0.79 mm/d.土壤水分剧烈变化期(5-10月)刺槐人工林地土壤水分含量的极差为95.71mm,油松人工林地为179.1mm,次生林地为72.03mm.在干旱少雨的黄土高原进行植被恢复时,应多采取封山育林等方式,依靠自然力量形成能够与当地土壤水资源相协调的次生林,是防止人工植被过度耗水形成“干化层”、保障水土保持植被持续发挥生态服务功能的关键.  相似文献   

15.
Deep soil desiccations are increasingly threatening artificial forests on the Loess Plateau of China. Soil moisture in 0–1000 cm soil layers of 23 kinds of tree and shrub forestlands was measured. Average soil moisture in 0–1000 cm soil profile of the forestlands was 10.84%, obviously lower than soil moisture in local natural grasslands and soil stable moisture. Average soil desic-cation intensity reached a medium level. Maximum soil water use depth was close to or over 1000 cm, and the thickness of desic-cated soil layers in forestlands reached or passed 800 cm.  相似文献   

16.
陕北黄土高原土壤干层的分布和分异特征   总被引:35,自引:3,他引:32  
以人工刺槐林为研究对象,经大量野外调查和数据分析,研究了陕北黄土高原土壤干层的分布状况和分异特征,结果表明,土壤干层在陕北黄土高原从南到北大范围内普遍分布,根据干化程度可分为4个类型区:1)以宜君为代表的高原沟壑区南部;2)以富县、黄陵为代表的高原沟壑区北部;3)范围较广的丘陵沟壑区,该区又可分为南、西、北3个小区,南区以延安、延长为代表;西区以吴旗、安塞为代表;北区以绥德、米脂为代表;4)以神木为代表的风沙区,受降雨量的影响,土壤干化程度具有明显的水平分异规律,即随着降雨量从南到北的减少,干化程度亦随之加重;受海拔高度、降雨入渗能力的影响,土壤干化程度在小范围的山地呈现明显的垂直分异规律,海拔愈高,干化程度愈严重;因土地类型的不同,土壤干化程度在局地空间上呈现明显的分异规律。  相似文献   

17.
子午岭次生林植被演替过程的土壤抗冲性   总被引:14,自引:0,他引:14  
周正朝  上官周平 《生态学报》2006,26(10):3270-3275
在水土流失极为严重的黄土高原地区,土壤抗冲性决定着土壤的可蚀性.于2004年5月在黄土高原惟一的次生林区——子午岭林区,通过原状土冲刷实验对不同植被演替阶段下的土壤抗冲性进行了研究.结果表明: (1)随植被的正向演替,表层土壤(0~15cm)的抗冲性明显增大,但亚表层(15~30cm)和底层(30~50cm)土壤抗冲性则没有太大的变化;(2)植物根系能显著的增强土壤抗冲性,土壤抗冲系数与单位土体根系表面积具有极显著的(p<0.001)线性相关关系;(3)土壤抗冲系数随土壤中水稳性团聚体含量和微生物量的增加而增大,且其相关关系极显著(p<0.001).综合根系(x1)、水稳性团聚体(x2)以及微生物(x3)对土壤抗冲性的影响,建立黄土高原地区土壤抗冲性方程: y=-4.89+1.27x1+0.079x2+1.94E-3x3 (R^2=0.914 p<0.001).  相似文献   

18.
果园生态系统生产力调控   总被引:6,自引:0,他引:6  
张义  谢永生  郝明德  鞠艳  摄晓燕 《生态学报》2009,29(12):6811-6817
以黄土沟壑区果园生态系统为研究对象,针对黄土高原果业生产波动性大,生态系统恶化等问题,通过调控果树的生殖生长量,研究了果园生态系统生产力调控及系统响应.结果表明:生产力水平高的处理对土壤深层的水分利用增强,但降低了土壤深层贮水量,从而进一步加重土壤干燥化程度;以生殖生长调控为手段的生产力调控能够显著改善果实的单果重、果实硬度、着色指数等外在品质,果品优果率可提高12.9%~23.5%;通过生产力调控,果业生产经济效益显著提高,果园生态系统健康状况得到维持,果树生产波动性缓解.确定挂果2.25×10~5个/hm~2的生产力水平为黄土沟壑区盛果期果园生态系统的适宜生产力水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号