首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
目的 深部脑刺激(deep brain stimulation,DBS)利用持续的电脉冲高频刺激(high-frequency stimulation,HFS)调控神经元的活动,可望用于治疗更多脑疾病。为了深入了解HFS的作用机制,促进DBS的发展,本文研究轴突HFS在引起轴突阻滞期间神经元胞体的改变。方法 在麻醉大鼠海马CA1区的锥体神经元轴突上施加脉冲频率为100 Hz的1 min逆向高频刺激(antidromic high-frequency stimulation,A-HFS)。为了研究胞体的响应,利用线性垂直排列的多通道微电极阵列,记录刺激位点上游CA1区锥体神经元胞体附近各结构分层上的诱发电位,包括A-HFS脉冲诱发的逆向群峰电位(antidromic population spike,APS)以及A-HFS期间施加的顺向测试脉冲诱发的顺向群峰电位(orthodromic population spike,OPS),并计算诱发电位的电流源密度(current-source density,CSD),用于分析A-HFS期间锥体神经元胞体附近动作电位的生成和传导。结果 锥体神经...  相似文献   

2.
通常采用恒定电脉冲间隔的高频刺激(high-frequency stimulation,HFS),进行深部脑刺激治疗帕金森氏症等运动障碍疾病.为了开发适用于不同脑疾病治疗的新刺激模式,近年来脉冲间隔(inter-pulse-interval,IPI)变化的变频刺激模式受到关注.已有研究表明,即使具有相同的平均电脉冲频率,变频刺激与恒频刺激的治疗效果也不同.我们推测,变频刺激的短小IPI变化就足以改变HFS对于神经元的作用.为了验证此推测,本文在大鼠海马CA1区锥体神经元的输入轴突纤维上交替施加恒频刺激(100或133 Hz,即IPI=10 ms或7.5 ms)和随机变频刺激(100~200 Hz,即IPI=5~10 ms,平均频率为133 Hz),记录并分析刺激下游神经元群体的诱发电位,用于定量评价神经元对于恒频和变频刺激的响应.实验结果表明,持续的恒频刺激使得神经元的响应从最初的同步发放形成的群峰电位(population spike,PS)转变为非同步的动作电位发放(即单元锋电位).但是,当刺激切换为变频模式时,却又可以诱发神经元群体同步产生动作电位,重新形成PS波.并且,变频刺激诱发的PS幅值和神经元发放的同步程度可达基线的单脉冲刺激诱发波的水平.但是,PS的发生率只有脉冲刺激频率的7%左右,表明在持续的变频刺激时,多个脉冲累积的作用才能诱发这种同步的神经元发放.而且PS的出现与前导IPI的长度之间存在一定关系.神经元的轴突和突触等结构对于高频刺激的非线性响应可能是变频刺激诱发同步活动的原因.这些结果表明,变频刺激序列中短小的间隔变化可以产生与恒定间隔不同的调控作用.本文的结果对于揭示脑刺激的作用机制,促进新型刺激模式的开发及其在不同类型脑疾病治疗中的应用具有重要意义.  相似文献   

3.
目的:观察电刺激大鼠脚内核(EP)对大鼠脚桥核(PPN)神经元自发放电的影响,进一步探讨脑内电刺激治疗帕金森病(PD)的机制。方法:应用细胞外记录的方法观察不同频率电刺激(强度0.6 mA,波宽0.06 ms,时程5 s,频率5 Hz、10Hz、20Hz、50Hz、100Hz、150Hz、200Hz)大鼠EP对PPN神经元放电的影响。结果:实验记录了大鼠33个神经元的自发放电,其放电频率在3.6~52.2Hz之间,平均为(15.95±8.56)Hz;当刺激频率为100Hz时,抑制效应最显著(P<0.05)。结论:高频电刺激大鼠EP对PPN神经元自发放电的影响主要为抑制作用,提示高频刺激EP可通过抑制PPN神经元活动参与PD的治疗。  相似文献   

4.
深部脑刺激(deep brain stimulation,DBS)在许多神经系统疾病的临床治疗上都展现出良好的应用前景,然而,其作用机制尚不明确.常规DBS采用高频刺激(high frequency stimulation,HFS)的脉冲序列,这种窄脉冲最容易激活神经元结构中的轴突部分,通过轴突的投射,将HFS的作用传播至下游神经元.因此,为了探讨DBS的作用机制,并鉴于海马脑区是治疗癫痫和痴呆症等疾病的重要靶点,我们研究了海马区轴突HFS对于下游神经元的作用.对麻醉大鼠的海马CA1区传入神经通路Schaffer侧支施加1 min的100 Hz高频刺激,记录并提取下游CA1区锥体神经元和中间神经元的单元锋电位.计算锋电位的发放率,以及它们与刺激脉冲之间的锁相值(phase-locking value,PLV)和潜伏期,以定量分析HFS期间神经元动作电位发放的变化趋势.结果显示,在传入轴突上施加HFS时,初期会诱发下游神经元群体同步产生动作电位(即群峰电位).在HFS后期(群峰电位消失之后),两类神经元的单元锋电位发放仍然持续,并且发放率较稳定.但是,锋电位与刺激脉冲之间的锁相性逐渐减弱、潜伏期逐渐延长.而且,与中间神经元相比较,锥体神经元锋电位的锁相性更弱、潜伏期更长.这些结果表明,持续的轴突HFS可以诱导下游神经元产生非同步的活动,高频脉冲刺激引起的不完全轴突传导阻滞可能是导致该现象产生的主要原因.本文的研究为揭示脑刺激的作用机制提供了重要信息.  相似文献   

5.
深部脑刺激(deep brain stimulation,DBS)已成为治疗帕金森病等运动障碍疾病的常规方法之一,并且在许多其他神经和精神疾病的治疗中也具有良好的应用前景.但是,目前常规DBS采用单通道恒定脉冲间隔的高频刺激(high frequency stimulation,HFS),刺激模式缺少多样化,限制了DBS在临床上的推广应用.为了开发更多DBS刺激模式,用于改善疗效、拓展应用范围、并节省刺激器的电能,近年来研究人员基于去同步调控机制,在脉冲序列的时间模式和空间排布两方面开发了DBS新模式.主要包括:变频序列(包括规则变频和随机变频)、不同空间位点上的多通道异步刺激以及变频和多通道两者的结合.这些新刺激模式能够提高DBS的临床疗效、降低刺激能耗,在帕金森病以及癫痫、强迫症和微意识障碍等其他脑疾病的治疗中都展现了良好的应用前景.更值得关注的是,多通道异步刺激不仅在刺激期间具有更好的即时疗效,而且刺激结束后还能长时间保持疗效,具有刺激后效应.这个特性突破了常规DBS主要为即时效应的局限性,展现了DBS新前景.本文在概述常规DBS模式及其去同步调控机制的基础上,综述变频脉冲刺激和多通道刺激等新型DBS模式,可以为促进DBS的发展提供有价值的信息.  相似文献   

6.
持续高频刺激改变短刺激产生的神经网络效应   总被引:1,自引:1,他引:0       下载免费PDF全文
不同时长的电脉冲高频刺激(high frequency stimulation,HFS)对于脑神经系统具有不同的作用.其中,数秒时长的短促HFS可通过"点燃"效应制作动物癫痫模型,也可以产生长时间保持的突触可塑性变化,而数分钟以上的长时HFS却可以安全地用于临床的深部脑刺激,治疗多种脑疾病.因此推测,持续的HFS可以改变短促刺激产生的效应.为了验证此推测,在大鼠海马CA1区的输入轴突纤维Schaffer侧支上,分别施加5 s和2 min两种时长的100 Hz HFS,并监测刺激结束后下游神经元群体对于单脉冲测试的响应电位,即群峰电位(population spike,PS).结果显示,5 s短HFS结束时会紧跟后放电痫样活动,并且,从测试脉冲诱发的PS幅值和潜伏期可见,短HFS诱导的兴奋性增强可以维持数十分钟.反之,2 min的长HFS结束时紧随之后的是数十秒无发放活动的静息期,而且,PS在数分钟内即恢复到HFS前的基线水平.这些结果表明,长时HFS的后期刺激可以改变前期短促刺激对于下游神经网络的作用,即消除短刺激可能产生的长时程兴奋效应.此发现对于深入了解高频刺激的作用机制、促进深部脑刺激的临床应用具有重要意义.  相似文献   

7.
为了正确检测和研究高频电刺激(high frequencystimulation,HFS)期间神经元的动作电位发放活动,进而深入揭示深部脑刺激治疗神经系统疾病的机制,本课题研究HFS期间锋电位波形的变化.在麻醉大鼠海马CA1区的输入神经通路Schaffer侧支上,施加1~2 min时长的100或者200 Hz顺向高频刺激(orthodromic-HFS,O-HFS),利用微电极阵列采集刺激下游神经元的多通道锋电位信号,并获得由O-HFS经过单突触传导激活的中间神经元的单元锋电位波形及其特征参数.结果表明,O-HFS使得锋电位的幅值明显减小而半高宽明显增加,以基线记录为基准计算百分比值,O-HFS期间锋电位的降支幅值和升支幅值分别可减小20%和40%左右,半高宽则增加10%以上.并且,在大量神经元同时产生动作电位期间,或者在比200 Hz具有更大兴奋作用的100 Hz刺激期间,锋电位波形的改变更多,幅值的减小可达50%,宽度的增加可达20%.可以推测,高频电刺激对于神经元的兴奋作用可能升高细胞膜电位,从而改变细胞膜离子通道的活动特性,导致动作电位波形的改变.这些结果支持深部脑刺激具有兴奋性调节作用的假说,对于正确分析高频电刺激期间神经元锋电位活动具有指导意义,也为进一步研究深部脑刺激(DBS)治疗脑神经系统疾病的机制提供了重要线索.  相似文献   

8.
深部脑刺激(deep brain stimulation,DBS)已在临床上广泛用于治疗帕金森病等疾病引起的运动障碍,它在难治性癫痫、顽固性强迫症等其他脑中枢神经系统疾病的治疗上也展现出良好的应用前景.经过30多年的临床应用、动物实验和计算模型仿真等多方面的研究,DBS的机制也逐渐明朗.虽然尚无定论,但已取得许多重要进展.本文从电生理角度分析和总结了有关DBS机制的发展历程.从早期的抑制论和兴奋论到目前主导的调控论;从关注刺激位点的神经元活动,到发现神经元胞体与轴突活动的去耦合,再到高频刺激诱导的间歇性轴突阻滞,以及由此轴突活动可能导致的投射区神经元群体的去同步活动.这一系列研究进展表明DBS具有复杂的神经网络调控机制.了解DBS的作用机制对于提高其疗效、开发新刺激模式以及扩大临床应用的范围都具有重要意义.  相似文献   

9.
伤害性刺激和电针对大鼠中缝大核内缝-脊神经元的效应   总被引:5,自引:0,他引:5  
用玻璃微电极细胞外记录大鼠中缝大核神经元放电,刺激脊髓胸段背外侧部诱发逆行动作电位,根据其潜伏期恒定性,能跟随高频刺激以及可与自发放电碰撞而消失等标准来鉴定缝-脊神经元。共记录45个缝-脊神经元,其传导速度多在15—60m/s 范围。对伤害性刺激发生兴奋性(增频)反应的31个,抑制性(减频)反应的6个。两个类型神经元的自发放电频率分别为5.74±0.96Hz 和12.03±2.68Hz。另有3个为兴奋抑制转化型,反应的转化与背景自发放电水平有关,即放电频率低时,对伤害性刺激为兴奋性反应,而当自发放电频率增高时,则转化为抑制性反应。此外还有5个神经元对伤害性刺激无明显反应。电针“足三里”对兴奋型的缝-脊神经元(n=13)能明显激活并抑制其伤害性反应,后者可能是由于下行抑制而产生的继发性效应。  相似文献   

10.
目的:探讨不同频率慢性电刺激对膈肌肌纤维亚型、肌球蛋白重链(MHC)亚型和代谢酶活性的适应性变化的影响.方法:分别用还原型辅酶Ⅰ四唑氮还原法、SDS-PAGE法和酶组织化学染色法观察、测定慢性电刺激后兔膈肌纤维类型、肌球蛋白重链(MHC)和NADHD等九种代谢酶活性变化.结果:①同对照组和慢性高频电刺激50Hz和100 Hz组比较,10 Hz和20 Hz慢性低频电刺激组膈肌Ⅰ型纤维,Ⅰ型MHC显著增加(P<0.01);ⅡB型纤维和ⅡB型MHC显著减少(P<0.01);慢性高频电刺激50Hz和100 Hz组则出现完全相反的变化(P<0.01).②同对照组和慢性高频电刺激50 Hz和100 Hz组比较,慢性低频电刺激10 Hz和20 Hz组LDH和a-GPDHD活性明显降低(P<0.01),MDH、SDH、GDH、G-6-PD、NADHD和NADPHD活性显著升高(P<0.01);慢性高频电刺激50Hz和100 Hz组则出现完全相反的变化(P<0.01).结论:肌纤维与代谢酶模式的适应性变化有明显的频率依赖性.  相似文献   

11.
培养海马神经元网络学习模型的构建   总被引:1,自引:0,他引:1  
对于培养的神经元网络而言,学习是外界刺激与网络响应之间联系建立和调控的过程.为构建合适的神经元网络学习模型,采用闭环低频(1 Hz)成对电极的电刺激模拟认知任务,在多通道微电极阵列系统中对培养的海马神经元网络进行训练,使其发生网络层次上的学习行为.经过训练后,神经元网络在刺激后20~80ms内的早期突触后响应明显增加,响应/刺激比(在闭环训练中,电极上任一阶段连续10次刺激的早期突触后响应的个数/10)增大,响应时延减小,并且响应具有选择性,即表明,神经元网络与外界刺激之间已建立可调控的联系,该可调控联系是通过网络的响应来表现的,建立神经元网络与外界刺激之间的可调控联系即网络层次的学习.  相似文献   

12.
During creation of a dominant focus in the midbrain reticular formation (RF) by its multiple stimulation with a high-frequency current (stimulation frequency 200 Hz, pulse duration 0.1-0.5 ms, voltage 1-3 V, duration 5 s) a statistically significant increase of the amplitude of the evoked potential (EP) in RF to light flashes was revealed in comparison with background data. Significant increase of EP amplitude was also observed in RF in response to the same stimuli applied in successive experiments without RF stimulation, which pointed to the existence of a latent dominant focus in the CNS.  相似文献   

13.
Voltage responses were recorded from outer hair cells (OHCS) in the basal coil of the guinea-pig cochlea in response to tones at frequencies above the characteristic frequency (CF) presented together with a 100 Hz tone at 80 dB or 85 dB sound pressure level (SPL). The amplitude and polarity of voltage responses to a 100 Hz, 85 dB SPL tone were altered when presented together with tones at frequencies above CF according to the frequency and level of the high-frequency tone, OHC phasic (ac) (greater than 500 microV) but not tonic (dc) voltage responses were elicited by the high-frequency tone. Thus the responses of OHCS to low-frequency tones can be altered when presented together with a high-frequency tone without an apparent dc change in membrane potential. Recordings were made from an OHC during cochlear desensitization through exposure to an intense tone. The maximum voltage response to high-level low-frequency tones remained unchanged, although the OHC response to high-frequency tones became less sensitive to low-level stimuli and more linear as a function of level. It is suggested that desensitization is associated with a change in the mechanical properties of the cochlea, possibly associated with the OHCS themselves, and not with inactivation of the transducer channels. The amplitude of the OHC ac voltage response was measured at neural threshold, and the consequences of these measurements on hair cell electromotility are considered.  相似文献   

14.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

15.
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.  相似文献   

16.
Picosecond pulse electrical fields (psPEFs), due to their high temporal-resolution accuracy and localization, were viewed as a potential targeted and noninvasive method for neuromodulation. However, few studies have reported psPEFs regulating neuronal activity in vivo. In this paper, a preliminary study on psPEFs regulating action potentials in hippocampus CA1 of rats in vivo was carried out. By analyzing the neuronal spike firing rate in hippocampus CA1 pre- and post-psPEF stimulation, effects of frequency, duration, and dosimetry of psPEFs were studied. The psPEF used in this study had a pulse width of 500 ps and a field strength of 1 kV/mm, established by 1 kV picosecond voltage pulses. Results showed that the psPEF suppressed spike firing in hippocampal CA1 neurons. The suppression effect was found to be significant except for 10 s, 10 Hz. For short-duration stimulation (10 s), the inhibition rate of spike firing increased with frequency. At longer stimulation durations (1 and 2 min), the inhibition rate increased and decreased alternately as the frequency increased. Despite this, the inhibition rate at high frequencies (5 and 10 kHz) was significantly larger than that at 10 and 100 Hz. A cumulative effect of psPEF on spike firing inhibition was found at low frequencies (10 and 100 Hz), which was saturated when frequency reached 500 Hz or higher. This paper conducts a study on psPEF regulating spike firing in hippocampal CA1 in vivo for the first time and guides subsequent study on psPEF achieving noninvasive neuromodulation. © 2020 Bioelectromagnetics Society  相似文献   

17.
This study explores the subjective use of adjectives to verbally communicate vibrotactile stimulation across multiple frequencies. In total, nine different vibrotactile stimulus frequencies (10–300?Hz) were utilized, and subjective evaluation methods, which involved adjectives, were used to assess the sensory representations of the participants (18 healthy male participants; mean age, 22.9 years; standard deviation, 3.5). Sensory terms such as ‘slow,’ ‘protruding,’ and ‘thick’ were used as representative expressions to describe low-frequency (10–100?Hz) vibrotactile stimulations, while ‘fast,’ ‘shallow,’ and ‘tickly’ were used to describe high-frequency (225–300?Hz) vibrotactile stimulations. At the frequencies of 150 and 200?Hz, no characteristic word was found because there was no difference in subjective evaluation scores from other low or high frequencies. The results suggest that vibrotactile stimulation at different frequencies induce diverse sensory representations, owing to not only the motion and shape of the stimuli but also the subjective responses of the perceivers. The results of this study could be utilized in developing affective haptic devices in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号