首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
We examined 12,026 fungal air samples (9,619 indoor samples and 2,407 outdoor samples) from 1,717 buildings located across the United States; these samples were collected during indoor air quality investigations performed from 1996 to 1998. For all buildings, both indoor and outdoor air samples were collected with an Andersen N6 sampler. The culturable airborne fungal concentrations in indoor air were lower than those in outdoor air. The fungal levels were highest in the fall and summer and lowest in the winter and spring. Geographically, the highest fungal levels were found in the Southwest, Far West, and Southeast. The most common culturable airborne fungi, both indoors and outdoors and in all seasons and regions, were Cladosporium, Penicillium, nonsporulating fungi, and Aspergillus. Stachybotrys chartarum was identified in the indoor air in 6% of the buildings studied and in the outdoor air of 1% of the buildings studied. This study provides industrial hygienists, allergists, and other public health practitioners with comparative information on common culturable airborne fungi in the United States. This is the largest study of airborne indoor and outdoor fungal species and concentrations conducted with a standardized protocol to date.  相似文献   

2.
We examined 12,026 fungal air samples (9,619 indoor samples and 2,407 outdoor samples) from 1,717 buildings located across the United States; these samples were collected during indoor air quality investigations performed from 1996 to 1998. For all buildings, both indoor and outdoor air samples were collected with an Andersen N6 sampler. The culturable airborne fungal concentrations in indoor air were lower than those in outdoor air. The fungal levels were highest in the fall and summer and lowest in the winter and spring. Geographically, the highest fungal levels were found in the Southwest, Far West, and Southeast. The most common culturable airborne fungi, both indoors and outdoors and in all seasons and regions, were Cladosporium, Penicillium, nonsporulating fungi, and Aspergillus. Stachybotrys chartarum was identified in the indoor air in 6% of the buildings studied and in the outdoor air of 1% of the buildings studied. This study provides industrial hygienists, allergists, and other public health practitioners with comparative information on common culturable airborne fungi in the United States. This is the largest study of airborne indoor and outdoor fungal species and concentrations conducted with a standardized protocol to date.  相似文献   

3.
The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. “Weedy” genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents’ foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear – to varying degrees – to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.  相似文献   

4.
Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of “normal and typical” types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems.  相似文献   

5.
Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of "normal and typical" types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems.  相似文献   

6.
Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome—the community of microorganisms that live indoors—is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors.  相似文献   

7.
Fungi are ubiquitous in outdoor air, and their concentration, aerodynamic diameters and taxonomic composition have potentially important implications for human health. Although exposure to fungal allergens is considered a strong risk factor for asthma prevalence and severity, limitations in tracking fungal diversity in air have thus far prevented a clear understanding of their human pathogenic properties. This study used a cascade impactor for sampling, and quantitative real-time PCR plus 454 pyrosequencing for analysis to investigate seasonal, size-resolved fungal communities in outdoor air in an urban setting in the northeastern United States. From the 20 libraries produced with an average of ∼800 internal transcribed spacer (ITS) sequences (total 15 326 reads), 12 864 and 11 280 sequences were determined to the genus and species levels, respectively, and 558 different genera and 1172 different species were identified, including allergens and infectious pathogens. These analyses revealed strong relationships between fungal aerodynamic diameters and features of taxonomic compositions. The relative abundance of airborne allergenic fungi ranged from 2.8% to 10.7% of total airborne fungal taxa, peaked in the fall, and increased with increasing aerodynamic diameter. Fungi that can cause invasive fungal infections peaked in the spring, comprised 0.1–1.6% of fungal taxa and typically increased in relative abundance with decreasing aerodynamic diameter. Atmospheric fungal ecology is a strong function of aerodynamic diameter, whereby through physical processes, the size influences the diversity of airborne fungi that deposit in human airways and the efficiencies with which specific groups of fungi partition from outdoor air to indoor environments.  相似文献   

8.
The concentration and distribution characteristics of airborne fungi were investigated in indoor and outdoor air of two metro stations (Imam Khomeini and Sadeghiyeh stations) in Tehran subway. Samples were taken from indoor air at each station from platform and ticket office area also from adjacent outdoor air of each station. Indoor sampling was conducted for two types of trains, old and new. The concentration of airborne fungi ranged from 21 CFU/m3 at the outdoor air of Imam Khomeini station to 1,402 CFU/m3 in the air samples collected from the platform of this station. Results showed that airborne fungi concentrations at indoor air were higher than the outdoor air (p < 0.05), and fungal levels significantly correlated with the number of passengers (p < 0.05; r = 0.68) and RH % (p < 0.05; r = 0.43). Sixteen genera of fungi were isolated in all sampled environments. The predominant genera identified in indoor and outdoor air were Penicillium spp. (34.88 % of total airborne fungi) and Alternaria spp. (29.33 % of total airborne fungi), respectively. The results of this study showed that the indoor air quality in subway is worse than the outdoor air.  相似文献   

9.
People spend most of their time inside buildings and the indoor microbiome is a major part of our everyday environment. It affects humans’ wellbeing and therefore its composition is important for use in inferring human health impacts. It is still not well understood how environmental conditions affect indoor microbial communities. Existing studies have mostly focussed on the local (e.g., building units) or continental scale and rarely on the regional scale, e.g. a specific metropolitan area. Therefore, we wanted to identify key environmental determinants for the house dust microbiome from an existing collection of spatially (area of Munich, Germany) and temporally (301 days) distributed samples and to determine changes in the community as a function of time. To that end, dust samples that had been collected once from the living room floors of 286 individual households, were profiled for fungal and bacterial community variation and diversity using microbial fingerprinting techniques. The profiles were tested for their association with occupant behaviour, building characteristics, outdoor pollution, vegetation, and urbanization. Our results showed that more environmental and particularly outdoor factors (vegetation, urbanization, airborne particulate matter) affected the community composition of indoor fungi than of bacteria. The passage of time affected fungi and, surprisingly, also strongly affected bacteria. We inferred that fungal communities in indoor dust changed semi-annually, whereas bacterial communities paralleled outdoor plant phenological periods. These differences in temporal dynamics cannot be fully explained and should be further investigated in future studies on indoor microbiomes.  相似文献   

10.
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m−3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m−3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.  相似文献   

11.
Inhalation of airborne fungi is known to cause respiratory illnesses such as allergies. However, the association between exposure and health outcomes remains largely unclear, in part due to lack of knowledge about fungal exposure in daily life. This study aims to introduce DNA-based methods such as high-throughput sequencing (HTS) and quantitative polymerase chain reaction (qPCR) to compare fungal microbiota and concentrations in indoor, outdoor, and personal air. Five sets of concurrent indoor, outdoor, and personal air samples were collected, each with duration of 4 days. Sequencing analysis revealed greater species richness in personal than indoor air for four out of the five sets, indicating that people are exposed to outdoor species that are not in indoor air. The personal–indoor (P/I) and personal–outdoor (P/O) ratios of total fungi were 1.2 and 0.15, respectively, suggesting that personal exposure to total fungi is better represented by indoor than outdoor concentrations. However, the ratios were taxon dependent, highlighting the complexity of generalizing personal exposure to the diverse kingdom Fungi. These results demonstrate that the HTS/qPCR method is useful for assessing taxon-specific fungal exposure, which might be difficult to achieve effectively using conventional, non-DNA-based techniques.  相似文献   

12.
Exposure to airborne microorganisms in indoor environments may result in infectious disease or elicit an allergic or irritant response. Air handling system components contaminated by fungi have been implicated in the dispersal of spores into the indoor environment, thereby serving as a route of exposure to occupants. This study was conducted to provide quantitative data on the dispersal of spores from fungal colonies growing on three types of duct material. Galvanized metal, rigid fibrous glass ductboard, and fiberglass duct liner were soiled and contaminated with a known concentration of Penicillium chrysogenum spores. The duct materials were incubated in humidity chambers to provide a matrix of growing, sporulating fungal colonies at a contamination level of 109 colony forming units (CFU) per duct section, consistent for all materials. For each experiment a contaminated duct section was inserted into the air handling system of an experimental room, and the air handling system was operated for three 5-minute cycles with an air flow of 4.2 m3 min–1. The duct air velocity was approximately 2.8 m sec–1. The airborne concentration of culturable P. chrysogenum spores (CFU m–3), total P. chrysogenum spores (spores m–3), and total P. chrysogenum-sized particles (particles m–3) were measured in the room using Andersen single-stage impactor samplers, Burkard slide impactor samplers, and an aerodynamic particle sizer, respectively. The highest airborne concentrations (104 CFU m–3; 105 spores m–3; 104 particles m–3) were measured during the first operating cycle of the air handling system for all duct materials with decreasing airborne concentrations measured during the second and third cycles. There was no significant difference in spore dispersal from the three contaminated duct materials. These data demonstrate the potential exposure for building occupants to high concentrations of spores dispersed from fungal colonies on air handling system duct materials during normal operation of the system.  相似文献   

13.
Airborne viable and total fungal spores were sampled inside and outside 80 houses in the Latrobe Valley, Victoria, Australia as part of a larger indoor environmental study. Each residence was visited six times over a period of 1 year for sample collection, and fungal spore samples were collected from at least three indoor sites and from an outdoor site. Viable spores were sampled using an Andersen sampler, while total spores were assessed using a Burkard spore trap. Identification of fungal colonies to genera level was performed in two seasons; winter and late spring. The most common fungal genera/groups wereCladosporium, Penicillium, and yeasts, both indoors and outdoors in winter and late spring. Outdoor levels were higher than those indoors throughout the year, and a significant seasonal variation in spore levels was seen both indoors and outdoors with overall maxima in summer. Contrary to this trend, the levels ofAspergillus, yeasts,Cephalosporium andGliocladium were higher in winter. Most fungal genera were found in greater concentrations outdoors compared to indoors, butPenicillium was more common indoors. Outdoor spore levels were a significant influence on indoor levels, but seasonal differences suggest that other influences are important.  相似文献   

14.
The prevalence of airborne fungal spores and pollen grains in the indoor and outdoor environments of a coir factory in Thiruvananthapuram district of Kerala state, India was studied using the Burkard Personal Sampler and the Andersen 2-stage Sampler for 2 years (September 1997 to August 1999). The concentration of pollen grains was remarkably lower than that of fungal spores (ratio of 1:28). There was no large difference in the concentrations and types of fungal spores between the indoor and outdoor environments, with 26 spore types found to be present indoors and 27 types outdoors; of these, 22 were common to both the environments. Aspergillus/Penicillium, Cladosporium, ‘other basidiospores’ and ascospores were the dominant spore types. The total spore concentration was highest in February and lowest in September, and it was significantly higher in 1998–1999 than in 1997–1998. Twenty viable colony-forming types were isolated from inside the coir factory. The most dominant viable fungi isolated were Penicillium citrinum, Aspergillus flavus and Aspergillus niger. The total pollen concentration was higher in the outdoor environment of the coir factory than indoors, with 15 and 17 pollen types, respectively. Grass and Cocos nucifera pollen types were dominant. The dominant spore and pollen types trapped in the two environments of the coir factory are reportedly allergenic and, consequently, workers are at risk of catching respiratory/allergic diseases.  相似文献   

15.
Little research has been carried out in London concerning fungal spore prevalence yet this information may help to elucidate geographical patterns of asthma and hay fever. Although many types of spore reach peak concentrations outdoors in late-summer, the incidences in the indoor environment may be more important through the winter because of heating and poor ventilation. Daily average concentrations of fungal spores in the ambient atmosphere were monitored with a Burkard volumetric spore trap on an exposed roof in North London from autumn 1991 until the summer of 1992. Indoor spore measurements were taken in 19 homes in the vicinity through the winter months, both by direct air sampling using a portable Burkard sampler and by dust culture. Trends in the occurrence and concentrations of fungal spores indoors and outdoors were examined. Relationships between the abundance of selected allergenic fungi and features of the houses were analysed including age of dwelling, dampness, cleanliness and presence of pets.Aspergillus andPenicillium were the most frequently occurring spore types in the homes. Overall, high spore incidence was associated with dampness and dust accumulation. The outdoor spore samples revealed generally low concentrations through the winter until March when concentrations of many types includingCladosporium, Epicoccum andAlternaria increased in abundance in response to the warmer weather. Even during the late-spring and early-summer, concentrations of most fungal spores were notably below those reported for rural sites.  相似文献   

16.
BackgroundThere is a lack of standardized protocols for assessing the presence of indoor fungi. It is thus difficult to compare results from different studies or to measure the effect of indoor fungal presence on occupants.AimsThe aim of the present work was to evaluate the presence of airborne fungal propagules within a hospital taking into account the influence of environmental factors.MethodsThe study was conducted in a hospital over a period of two years. Two portable aerobiological samplers were used: one capturing propagules onto a sticky surface, and the other onto a culture medium consisting of Sabouraud dextrose agar in Petri dishes, supplemented with chloramphenicol. Sampling was performed indoors at four sites (two on the ground floor and two on the third floor, each consisting of an open ward and a closed room). Samples were also taken outdoors. The following factors were considered for fungus occurrence: season, weather conditions, number of people present in the wards, the insulation of the indoor sites and the existence of construction works on the two floors. We carried out 60 ten-minute samples, weekly during the spring (24 samples), and fortnightly for the rest of the year (36 samples).ResultsA total of 2456 colony forming units (CFU) were obtained, with mean propagule concentrations of 107 CFU/m3 outdoors and 24 CFU/m3 indoors. 35330 counts were recorded for propagules. The mean concentrations were 2473 propagules/m3 outdoors and 790 indoors. A statistically significant positive correlation was found between the number of people in one of the wards and fungus occurrence, and the occurrence in both ground floor and third floor rooms was positively correlated with outdoor levels. These showed a seasonal pattern with peaks in summer. Indoors, however, the peaks appeared in spring and autumn. Outdoor construction activities affected the propagule loads but not the number of CFU.ConclusionsThe indoor fungus occurrence in the hospital was independent of meteorological conditions and of insulation from outside of the indoor sites selected, but was correlated with the season and number of people in the third floor ward. Outdoor construction activities affected values of indoor propagules, although seasonality could mask their effect.  相似文献   

17.
Background The expression of fungal allergens is increased by the germination of conidia. We assessed the state of germination of fungal conidia recovered by nasal lavage after environmental exposure. Methods Nasal lavage was performed on twenty adults at three stages: the start of the experiment, after 1 h indoors, and after 1 h outdoors. One half of the lavage liquid was immediately treated to prevent in-vitro germination and stained with periodic acid Schiff (PAS) to enable identification of germinated and ungerminated conidia. The untreated half of the lavage liquid was cultured on nutrient agar plates to enumerate and identify viable fungi. Results PAS staining showed that both ungerminated and germinated conidia, and hyphal fragments, were present in the nasal cavity. The most prevalent fungi recovered were Aspergillus, Alternaria, Cladosporium, Epicoccum, Penicillium, and Yeast species. The number of viable fungi recovered after 1 h indoors was significantly less than after 1 h outdoors (P < 0.01). Conclusions Viable fungi and germinating conidia, in addition to ungerminated conidia and hyphal fragments, were present in the nasal cavity after both indoor and outdoor exposure. This provides novel insight into the pathogenicity of exposure to fungal aeroallergens.  相似文献   

18.
Summary Indoor and outdoor airborne microfungi were studied in fourteen homes of Córdoba (Spain) for two years. Samplings were done gravimetrically in three rooms in each home and, for comparison, also outdoors. An overall 128 taxa were identified, which were classified according to their occurrence into occasional, frequent and permanent. No statistically significant quantitative differences were found between the microfungi in each room. On the other hand, there were significant quantitative differences between indoor and outdoor microfungi. Spores occurred at their maximum concentrations in spring. Finally,Aspergillus andCladosporium were found to be the most abundant genera indoors and outdoors, respectively.  相似文献   

19.
Indoor and outdoor airborne fungal propagule concentrations in Mexico City   总被引:7,自引:0,他引:7  
Thirty homes of asthmatic adults located in Mexico City were examined to determine the predominant culturable fungi and the changes in their airborne concentrations. Fungi were cultured and identified microscopically from air samples collected in naturally ventilated homes, during both wet (July–August) and cool dry (November–December) seasons, and from settled dust from the same homes. Airborne dust from indoor yielded 99–4950 cfu m−3, and settled dust 102–106 cfu g−1 on DG18 agar. The indoor geometric mean concentration of airborne fungi during the cool dry season was 460 cfu m−3 while in the wet season it was 141 cfu m−3. Similarly, numbers of airborne fungal propagules out of doors decreased 60% between the dry and wet season. In general, the total fungal concentrations in indoor air were less than 103 cfu m−3 and a large proportion of them was collected in Stage-2 of the Andersen sampler. Moreover, the ratio between indoor and outdoor concentrations was <3:1. Five of the 30 sampled homes yielded >500 cfu m−3 of one genus, with up to 1493Cladosporium cfu m−3 or 2549Penicillium cfu m−3. Also, these two genera were predominant in both airborne and settled dust, and their concentrations were greater indoors than out, indicating a possible indoor source of fungal propagules. The predominant species wereCladosporium herbarum, Penicillium aurantiogriseum andP. chrysogenum. These results suggest that exposure to large concentrations of fungi occurs indoors and is associated with both seasons of the year and with particular home characteristics.  相似文献   

20.
The increasing concern with bioaerosols in large office buildings prompted this prospective study of airborne fungal concentrations in a newly constructed building on the Gulf coast. We collected volumetric culture plate air samples on 14 occasions over the 18-month period immediately following building occupancy. On each sampling occasion, we collected duplicate samples from three sites on three floors of this six-story building, and an outdoor sample. Fungal concentrations indoors were consistently below those outdoors, and no sample clearly indicated fungal contamination in the building, although visible growth appeared in the ventilation system during the course of the study. We conclude that modern mechanically ventilated buildings prevent the intrusion of most of the outdoor fungal aerosol, and that even relatively extensive air sampling protocols may not sufficiently document the microbial status of buildings. Received: 7 April 1999 / Accepted: 2 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号