首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A nick-labeling method has been used to localize the relaxation complex nick sites in three plasmids (pSC101, RSF1010, and R6K) that differ markedly in their host range, deoxyribonucleic acid replication, and conjugal transfer properties. Single specific relaxation sites were located in pSC101 and RSF1010, but surprisingly two distinct sites could be identified in the bi-origin plasmid R6K. In all cases, relaxation nick sites, which are thought to be origins of plasmid conjugal transfer, were shown to be located near origins of vegetative replication. This result suggests a functional interaction between these two types of deoxyribonucleic acid loci, and we speculate here that application events initiated at origins of replication may constitute an integral part of the process of conjugal transfer of small plasmids among bacteria. Consistent with this proposal is the finding that inhibition of vegetative replication of the pSC101 and ColE1 plasmids results in a severe inhibition of their conjugal transfer ability.  相似文献   

2.
Intramolecular transposition and inversion in plasmid R6K   总被引:7,自引:5,他引:2       下载免费PDF全文
Selection was made in Escherichia coli K-12 recA hosts carrying plasmid R6K for ampicillin hyperresistance. Twenty-two selected strains were found to carry mutant plasmids, which, from electron microscopy and restriction enzyme analysis, were concluded to arise by a duplication of transposon Tn2660, which confers ampicillin resistance, in all cases the duplicate transposon being in an inverted orientation with respect to the resident Tn2660. A mutant of R6K, pSJC301, which was temperature sensitive for ampicillin resistance was produced by in vitro hydroxylamine treatment of R6K deoxyribonucleic acid. A plasmid hybrid, pSJC102, was constructed by cloning the EcoRI R6K fragment carrying the wild-type beta-lactamase gene into the EcoRI site of ColE1. pSJC301 and pSJC102 were transformed into the same recA host strain to form a stable biplasmid strain. Ampicillin-hyperresistant mutants were selected from this strain and screened for plasmids with a duplication of transposon Tn2660, which occurred with equal frequency in either pSJC301 or pSJC102; of 12 characterized, all were inverse repeats of the resident transposon. All six Tn2660 inserts into pSJC301 determined temperature-sensitive ampicillin resistance, and all six inserts into pSJC102 determined wild-type ampicillin resistance, from which it was inferred that transposition of a duplicate Tn2660 occurs predominantly as an intramolecular event, at least in the multicopy R6K plasmid. In all 28 insertion mutants of R6K, there was an inversion of the deoxyribonucleic acid between the two transposons, whereas in only one of six insertion mutants of pSJC102, inversion had occurred. These results are discussed in terms of current models of transposition.  相似文献   

3.
The deoxyribonucleic acid of the thermosensitive R factor, Rts1, has been examined by the technique of sedimentation in alkaline sucrose, electron microscopy, and radiation target size. All these methods yielded a molecular weight of approximately 120 million for Rts1 deoxyribonucleic acid in Escherichia coli. Sedimentation analysis revealed that Rts1 deoxyribonucleic acid in Proteus mirabilis was also 120 million daltons. Rts1 did not segregate into E. coli minicells under the conditions where another smaller non-thermosensitive R factor could.  相似文献   

4.
The autonomous replication of an R plasmid, R6K (amp, str) was shown not to be affected by chloramphenicol. It provoked integrative suppression and gave rise to Hfr strains when integrated into the chromosome of a strain of Escherichia coli K-12 with a temperature-sensitive mutation in the gene, dnaA. An Hfr strain designated as Hfr(R6K) no. 1 was thus obtained and characterized. It was not completely stable as shown by a plating efficiency of 0.6 at 42 C relative to that at 30 C. The density labeling and the ultracentrifugation analysis suggested that the deoxyribonucleic acid replication in this Hfr strain did not stop immediately after completion of the round already started before temperature shift-up and the addition of chloramphenicol. These observations are discussed in relation to a possibility that the chromosome replication of this Hfr strain is under the control of the integrated plasmid at a nonpermissive temperature.  相似文献   

5.
Transformation experiments showed that spontaneous deletions which result in loss of streptomycin resistance and an increase in conjugal transfer efficiency are present at a frequency of about 10(-4) in plasmid molecules of R6K. Similar deletions were thus readily selected by conjugal transfer of R6K, and their appearance was dependent upon recA+ activity in either donor or recipient host. The deoxyribonucleic acid segment deleted in four mutants examined was concluded to extend from the same terminus of the transposon, TnA, in the same direction, but to different extents, and to retain the TnA region intact. Insertions of a duplicate TnA element were found in R6K plasmids isolated from strains selected for increased ampicillin resistance, which were unstable in recA+ strains. In four plasmids examined after transfer to a recA host, an inverted repeat of the preexisting TnA element was shown to have been inserted at a similar location and was in two instances associated with deletions which extended from the same direction as those described above. The deletions are ascribed to the result of recA+-dependent recombination between direct repeats of TnA.  相似文献   

6.
Alkaline sucrose velocity sedimentation and cesium chloride-ethidium bromide equilibrium centrifugation have been used to determine the number of copies per chromosomal equivalent of the relaxedly replicating R6K plasmid (a conjugative plasmid conferring ampicillin and streptomycin resistance) in two minicell-producing strains of Escherichia coli K-12. In one strain, the average number of covalently closed circular R6K molecules per chromosomal equivalent is 13 in log-phase and 35 in stationary-phase cells. In the other strain, there is an average of six covalently closed circular R6K molecules per chromosomal equivalent in both log- and stationary-phase cells. Selection from this strain of spontaneously occurring mutants resistant to high concentrations of ampicillin has been accomplished and such mutants show a two- to threefold increase in the number of R6K copies per chromosomal equivalent. Relative to the parental strain, mutants display the following properties: (i) elevated streptomycin resistance, (ii) a 10-fold increase in R6K conjugal transfer, (iii) a 10-fold increase in the amount of R6K plasmid deoxyribonucleic acid segregated into minicells, and (iv) a two- to threefold increase in R6K-specified beta-lactamase. The mutation(s) responsible for the increase in the number of R6K molecules per chromosomal equivalent is located on the bacterial chromosome. No R6K-linked mutations conferring the above phenotypes have been obtained. The mutations are presumed to be in chromosomal genes which play a role in the regulation of R6K replication in this strain.  相似文献   

7.
Mode of Action of Colicins of Types E1, E2, E3, and K   总被引:5,自引:2,他引:3       下载免费PDF全文
The effect of colicins on deoxyribonucleic acid and protein synthesis, and also their effect on the ability of T4 phage to replicate in Escherichia coli K-12, were studied. Colicins of type K inhibited deoxyribonucleic acid synthesis, protein synthesis, and phage growth. Among colicins of type E, there was an absolute correlation between mode of action and subdivision into types E(1), E(2), and E(3).  相似文献   

8.
R62, a naturally occurring hybrid R plasmid   总被引:5,自引:4,他引:1       下载免费PDF全文
R62, a naturally occurring R factor, was shown to be a single deoxyribonucleic acid molecule composed of polynucleotide sequences typical of I group plasmids and also sequences typical of the N group. It determined I pili and belonged to the Iα compatibility group. Although compatible with plasmids of group N, R62 showed complex genetic reactions with N plasmids which are described and interpreted. It is concluded that R62 was the product of illegitimate recombination between an I group and an N group plasmid.  相似文献   

9.
Some properties of the supercoiled deoxyribonucleic acid (DNA)-protein relaxation complex of the R plasmid NR1, which contains more than one origin for DNA replication, were examined. The percentage of complexed NR1 molecules that can be converted to the relaxed (nicked) form appeared to be unaffected by the conditions under which the host cells were cultured. However, the percentage of supercoiled NR1 DNA that can be relaxed was highly dependent on the method used to prepare the DNA and the agents used to induce relaxation. Our data suggest that 100% of NR1 molecules may exist in situ as DNA-protein relaxation complexes. An RTF-Tc segregant of NR1, which has deleted the r-determinants component of the NR1 and therefore does not contain the two origins of replication located in the r-determinants, has indistinguishable relaxation properties in comparison with NR1 itself.  相似文献   

10.
Replication of antibiotic resistance plasmid R6K DNA in vitro.   总被引:7,自引:0,他引:7  
M Inuzuka  D R Helinski 《Biochemistry》1978,17(13):2567-2573
A soluble extract prepared from cells of an Escherichia coli strain carrying the antibiotic resistance plasmid R6K is capable of carrying out the complete process of R6K DNA replication. DNA synthesis in vitro is dependent on the four deoxyribo- and ribonucleotide triphosphates and is sensitive to rifampin and streptolydigin, inhibitors of DNA-dependent RNA polymerase. The incorporation of deoxyribonucleotides into R6K DNA also is sensitive to actinomycin D, novobiocin, arabinofuranosyl-CTP, and N-ethylmaleimide. Kinetics of synthesis are linear for 60 to 120 min. Replication proceeds semiconservatively and supercoiled closed-circular DNA molecules are synthesized. Analysis by alkaline sucrose gradient centrifugation indicated that the early R6K DNA products contain DNA fragments of approximately 18 S in size, corresponding to the length between the R6K alpha origin of replication and the terminus of replication observed in vivo. Addition of exogenous supercoiled R6K DNA is inhibitory to the in vitro system, whereas the addition of R6K DNA in the form of relaxation complex stimulates R6K DNA synthesis to a small extent.  相似文献   

11.
Genetic organization of the broad-host-range IncP-1 plasmid R751.   总被引:31,自引:23,他引:8       下载免费PDF全文
We have identified regions encoding conjugal transfer, plasmid maintenance, and trimethoprim resistance on the IncP-1 plasmid R751 by complementation tests with cloned deoxyribonucleic acid fragments and self-replicating derivatives constructed in vitro. The genes for replication and transfer show a scattered organization similar to that previously determined for RK2, another IncP-1 plasmid. Derivatives of RK2 are able to complement R751 derivatives defective in these functions. Restriction enzyme cleavage sites in R751 deoxyribonucleic acid are clustered in regions of the plasmid physical map. Neither region is required for plasmid maintenance or transfer, although one determines resistance to trimethoprim. A similar clustering of cleavage sites is seen with RK2, which nevertheless has a very different restriction map.  相似文献   

12.
The buoyant density of deoxyribonucleic acid (DNA) from the temperature-sensitive R factor, Rts1, was determined by CsCl density-gradient centrifugation. Rts1 was found to consist of a single species of DNA of density 1.705 g/cm(3), which corresponds to a base composition of 45% guanine plus cytosine. This value is distinct from the densities previously reported for other R factors, suggesting that Rts1 represents a new molecular class of R factors.  相似文献   

13.
Pyrazinamide (PZA) is an important component of first-line antituberculosis drugs activated by Mycobacterium tuberculosis pyrazinamidase (PZase) into its active form pyrazinoic acid. Mutations in the pncA gene have been recognized as the major cause of PZA resistance. We detected some novel mutations, Leucine19Arginine (L19R), Arginine140Histidine (R140H), and Glutamic acid144 Lysine (E144K), in the pncA gene of PZA-resistant isolates in our wet lab PZA drug susceptibility testing and sequencing. As the molecular mechanism of resistance of these variants has not been reported earlier, we have performed multiple analyses to unveil different mechanisms of resistance because of PZase mutations L19R, R140H, and E144K. The mutants and native PZase structures were subjected to comprehensive computational molecular dynamics (MD) simulations at 100 nanoseconds in apo and drug-bound form. Mutants and native PZase binding pocket were compared to observe the consequence of mutations on the binding pocket size. Hydrogen bonding, Gibbs free energy, and natural ligand Fe +2 effect were also analyzed between native and mutants. A significant variation between native and mutant PZase structure activity was observed. The native PZase protein docking score was found to be the maximum, showing strong binding affinity in comparison with mutants. MD simulations explored the effect of the variants on the biological function of PZase. Hydrogen bonding, metal ion Fe +2 deviation, and fluctuation also seemed to be affected because of the mutations L19R, R140H, and E144K. The variants L19R, R140H, and E144K play a significant role in PZA resistance, altering the overall activity of native PZase, including metal ion Fe +2 displacement and free energy. This study offers valuable evidence for better management of drug-resistant tuberculosis.  相似文献   

14.
We have investigated the behavior, during exponential growth, of strains of Escherichia coli carrying a dnaA(Ts) mutation that has been suppressed by the integration of the F-like R plasmid R100.1. We present evidence showing that replication in these strains proceeds largely from the normal chromosome origin at 30 degrees C, a permissive temperature for the dnaA(Ts) gene product, whereas, at 42 degrees C, replication proceeds largely from the integrated plasmid. These conclusions are based on measurements made by deoxyribonucleic acid:deoxyribonucleic acid hybridization of the relative frequencies of the prophages Mu-1 and lambdaind- and R100.1 integrated at known locations on the E. coli chromosome in these Hfr strains.  相似文献   

15.
Structural properties of the beta origin of replication of plasmid R6K   总被引:16,自引:0,他引:16  
The beta origin of replication of plasmid R6K, one of three active R6K origins of replication, requires most or all of a 1962-base pair (bp) sequence for activity. The nucleotide sequence of a portion of this functional beta origin was determined in an earlier study (Stalker, D., Kolter, R., and Helinski, D. (1982) J. Mol. Biol. 161, 33-43). In this work, the sequence of the remaining portion of this 1964-bp segment was obtained. In addition to its activity as an origin of replication, this sequence also contains sufficient information for autonomous replication in Escherichia coli. A 277-bp region containing seven 22-bp direct repeats is present at one end of the beta origin segment (Stalker, D., Kolter, R., and Helinski, D. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 1150-1154) while the other end contains a 140-bp sequence that includes a relaxation complex site. The 277-bp direct repeat region is required for activity of the beta origin. The start of the beta origin of replication as mapped by electron microscopy (Crosa, J. (1980) J. Biol. Chem. 255, 11075-11077) lies approximately 1000 bp away from the 277-bp region. The pi structural gene, which makes up most of the sequence between the direct repeats and the beta origin, is required in cis for beta origin activity. The pi protein also is required for beta origin activity but can be provided in trans. The nucleotide sequence just beyond the pi structural gene and within or near the start of beta origin of replication contains an open reading frame for a 151-amino acid protein. Deletions ranging from 94 bp to 1590 bp were obtained within the 1964-bp beta origin region. In every case, the deletion results in loss of origin activity even when the deleted sequence plus adjacent regions are provided in trans. These observations suggest a requirement for a specific secondary structure over an extensive region for beta origin activity.  相似文献   

16.
A new R plasmid-mediated restriction-modification system of deoxyribonucleic acid was identified. This system is specific for group E plasmids which have been detected in unidentified marine Vibrio fish pathogens.  相似文献   

17.
Plasmid R6K contains two functional origins or transfer (oriT), in contrast to previously characterized conjugative plasmids. TheoriTsare formed by 98 bp palindromic sequences invertedly orientated with respect to each other and located in the immediate vicinity of the α and β origins of replication. The gene for R6KoriT-nickase,taxC, was identified by transposon mutagenesis and sequenced, revealing that TaxC belongs to the VirD2 nickase family. The protein was overproduced and purified. It catalysed a cleaving-joining reaction on single-stranded DNA containing its target sequence. Identification of thenicsites suggested that the R6KoriTsbelong to the RP4/VirD2oriTfamily. Cleavage was highly specific and did not occur with oligonucleotides cleaved by related nickases like TraI of RP4 or VirD2 of the Ti plasmid.niccleavage ofin vivopre- assembled relaxation complexes was induced by incubation of plasmid cleared lysates with ethidium bromide. Nicked molecules obtained in this way were treated with snake venom phosphodiesterase to produce double strand cleavages at thenicsites. 35% of the molecules were cleaved simultaneously at bothnicsites, both in the case of R6K and of R6Kdrd1, a derepressed mutant whose frequency of transfer is 1000-fold higher. This figure represents the minimum percentage of individual R6K molecules containing two pre-assembled relaxation complexes.  相似文献   

18.
Physical Properties and Mechanism of Transfer of R Factors in Escherichia coli   总被引:26,自引:20,他引:6  
The physical properties of F-like and I-like R factors have been compared with those of the wild-type F factor in Escherichia coli K-12 unmated cells and after transfer to recipient cells by conjugation. The F-like R factor R538-1drd was found to have a molecular weight of 49 x 10(6), whereas the molecular weight of the I-like R factor R64drd11 was 76 x 10(6). The wild-type F factor, F1, had a molecular weight of 62 x 10(6). When conjugation experiments are performed by using donor strains carrying these derepressed F-like or I-like R factors, the transferred deoxyribonucleic acid can be isolated as a covalently closed circle from the recipient cells. This circular deoxyribonucleic acid was characterized by making use of the observation that the complementary strands of these R factors can be separated in a CsCl-poly (U, G) equilibrium gradient. The results of the strand-separation experiments show that only one of the complementary strands of the R factor is transferred from the donor to the recipient. With both the F-like and I-like R factors, this strand is the heavier strand in CsCl-poly (U, G). These results indicate that even though F-like and I-like R factors differ greatly in many properties (phage specificity, size, compatability, etc.), they are transferred by a similar mechanism.  相似文献   

19.
The expression of incompatibility properties between the IncX plasmids R6K and R485 of Escherichia coli was examined. For small autonomously replicating derivatives of both plasmid elements, the requirements for incompatibility expression include a functional R485 replicon and an active R6K beta-origin region. Functional R6K alpha and gamma origins are not directly involved in incompatibility expression between R6K and R485. A trans-acting replication system was constructed for plasmid R485. It consists of a 3.2-(kb) DNA fragment of R485 that specifies a product(s) in trans which supports replication from an R485 origin plasmid. A minimal R485 origin region of 591 bp was derived utilizing this trans-acting replication system and the nucleotide sequence of this origin region determined. The most striking feature of the sequence is the presence of six tandem 22-bp nucleotide sequence direct repeats.  相似文献   

20.
We have observed that integration of the R plasmid R100.1 into the chromosome of Escherichia coli is associated with the formation of small, covalently closed circular elements. Contour length measurements, partial denaturation mapping, and analysis of the deoxyribonucleic acid fragments produced by digestion of one of these, pLC1, with the restriction endonuclease EcoRI indicate that it is the r-determinant element of R100.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号