首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated counts of bacteria were found during outgoing tides in surface microlayers (~300 μm) of Sippewissett salt marsh, Falmouth, Massachusetts, and Palo Alto salt marsh, Palo Alto, California. At both sampling sites, the degrees by which bacteria were concentrated into the surface microlayer were linearly dependent upon surface concentration of particulate material. A significant percentage of bacteria in the microlayer were found to be attached to particulate material, while bacterial populations in the subsurface water were largely planktonic. Proportions of the bacterial populations which could be grown on seawater nutrient agar were also greater in the microlayer than in the subsurface waters and were positively correlated with the fraction of bacteria attached to particulate matter. Data from these studies suggest that particulates in the microlayer waters of the salt marsh influenced the observed increase in both the readily grown and the total numbers of bacteria.  相似文献   

2.
One of the key steps towards predicting dimethylsulfide (DMS) emission to the atmosphere is to understand the distribution and cycling of biogenic sulfur in the microlayer. In this study, we examined the distribution of DMS and dissolved and particulate fractions of dimethylsulfoniopropionate (DMSPd and DMSPp) in the surface microlayer and bulk water of the western North Atlantic during July 2003. DMS concentrations in the bulk water varied from 0.71 to 7.65 nM. In contrast, DMS concentrations in the surface microlayer were fairly low (0.17–1.33 nM). Average concentrations of DMSPd and DMSPp in the bulk water were 2.09 (1.87–6.25) and 44.1 (8.06–119.8) nM, respectively, and those in the surface microlayer were 15.4 (4.06–54.3) and 29.9 (7.32–97.0) nM. In general, DMS was depleted in the microlayer (mean concentration: 0.60 nM) relative to the bulk water (mean concentration: 2.38 nM) with enrichment factors (the ratio of the microlayer concentration to bulk water concentration) ranging from 0.13 to 0.54. There was no consistent enrichment of DMSPp and chlorophyll a in the microlayer. On the contrary, DMSPd appeared to be highly enriched in the microlayer with an average EF of 4.89. The concentration of phaeopigments was also generally greater in the microlayer than in the bulk water, presumably due to enhanced photo-oxidation of chlorophyll a under high surface light intensities in the microlayer. In the study area, the concentration of DMSPp was significantly correlated with the abundance of dinoflagellates in the microlayer. Moreover, a significant correlation between the distributions of DMS, DMSPp, chlorophyll a and phaeopigment concentrations in the microlayer and the bulk water demonstrated that the biogenic materials in the microlayer come primarily from the bulk water below.  相似文献   

3.
Viable counts of heterotropic soil bacteria were 3–5 times higher on low-nutrient agar media compared with a series of conventional agar media. Substantial amounts of monosaccharides and amino acids were present in solid media made from distilled water and agar powder, and a salt-solution agar medium (without organic substrates added) gave practically the same colony counts as the low nutrient soil extract agar medium. MPN values were comparable to or lower than plate counts. A search for slow-growing cells in the negative MPN tubes by fluorescence microscopical examination after 3 months incubation was negative.The viable counts were 2–4% of the total microscopical counts in different soils. Assuming that the colony-forming cells did not derive from the numerous dwarf cells present in soil, a calculated percent viability of the larger cells was about 10%. The ecological significance of the plate-counting technique is discussed.  相似文献   

4.
Hydrocarbon-utilizing microorganisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population.  相似文献   

5.
Pseudomonas fluorescens strain LP6a, designated here as strain WEN (wild-type PAH catabolism, efflux positive), utilizes the polycyclic aromatic hydrocarbon phenanthrene as a carbon source but also extrudes it into the extracellular medium using the efflux pump EmhABC. Because phenanthrene is considered a nontoxic carbon source for P. fluorescens WEP, its energy-dependent efflux seems counter-productive. We hypothesized that the efflux of phenanthrene would decrease the efficiency of its biodegradation. Indeed, an emhB disruptant strain, wild-type PAH catabolism, efflux negative (WEN), biodegraded 44% more phenanthrene than its parent strain WEP during a 6-day incubation. To determine whether efflux affected the degree of oxidation of phenanthrene, we quantified the conversion of 14C-phenanthrene to radiolabeled polar metabolites and 14CO2. The emhB ? WEN strain produced approximately twice as much 14CO2 and radiolabeled water-soluble metabolites as the WEP strain. In contrast, the mineralization of 14C-glucose, which is not a known EmhB efflux substrate, was equivalent in both strains. An early open-ring metabolite of phenanthrene, trans-4-(1-hydroxynaphth-2-yl)-2-oxo-3-butenoic acid, also was found to be a substrate of the EmhABC pump and accumulated in the supernatant of WEP but not WEN cultures. The analogous open-ring metabolite of dibenzothiophene, a heterocyclic analog of phenanthrene, was extruded by EmhABC plus a putative alternative efflux pump, whereas the end product 3-hydroxy-2-formylbenzothiophene was not actively extruded from either WEP or WEN cells. These results indicate that the active efflux of phenanthrene and its early metabolite(s) decreases the efficiency of phenanthrene degradation by the WEP strain. This activity has implications for the bioremediation and biocatalytic transformation of polycyclic aromatic hydrocarbons and heterocycles.  相似文献   

6.
Phenanthrene biodegradation was investigated at different soil water contents [0.11, 0.22, 0.33, 0.44 g H2O (g soil)?1] to determine the effects of water availability on biodegradation rate. A subsurface horizon of Kennebec silty loam soil was used in this study. [9-14C] phenanthrene was dissolved in a mixture of organic contaminants that consisted of 76% decane, 6% ρ-xylene, 6% phenanthrene, 6% pristane, and 6% naphthalene, and then added to the soil. The highest rate of mineralization, in which 0.23% of the [9-14C] phenanthrene degraded to 14CO2 after 66 days of incubation, was observed at the soil water content of 0.44 g H2O/g dry soil. Most of the 14C remained in the soil as the parent compound or as nonextractable compounds by acetonitrile at the highest water content. Concentrations of nonextractable compounds increased with water content, but residual extractable phenanthrene decreased significantly with increasing water content, which presumably indicates that bio-transformation occurred. The mineralization analysis of radiolabeled 9th carbon in phenanthrene underestimated phenanthrene biodegradation. The strong adsorption and low solubility of phenanthrene contributed to the low mineralization of phenanthrene 9th carbon. The other components were subject to higher biological and abiotic dissipation processes with increasing soil water content.  相似文献   

7.
The effect of varying salinity on phenanthrene and glutamate mineralization was examined in sediments along a natural salinity gradient in an urban tidal river. Mineralization was measured by trapping14CO2 from sediment slurries dosed with trace levels of [14C]phenanthrene or [14C]glutamate. Sediments from three sites representing three salinity regimes (0, 15, and 30%.) were mixed with filtered column water from each site. Ambient phenanthrene concentrations were also determined to calculate phenanthrene mineralization rates. Rates of phenanthrene mineralization related significantly to increasing salinity along the transect as determined by linear regression analysis. Rates ranged from 1 ng/hour/g dry sediment at the freshwater site to > 16 ng/hour/g dry sediment at the 30 salinity site. Glutamate mineralization also increased from the freshwater to the marine site; however, the relationship to salinity was not statistically significant.To examine the effect of salinity on mineralizing activities, individual sediments were mixed with filtered water of the other two sites. Slurries were also made with artificial seawater composed of 0, 15, or 30 g NaCl/ liter to substitute for overlying water. Rates of phenanthrene mineralization in the 0 ambient salinity sediments were not affected by higher salinity waters. Activities in the 15 and 30 ambient salinity sediments, however, were significantly inhibited by incubation with 0 salinity water. The inhibition, in large part, appears to be due to the decreased NaCl concentration of the water phase. Glutamate mineralization was affected in a similar manner, but not as dramatically as phenanthrene mineralization. The results suggest that phenanthrene degraders in low salinity estuarine sediments subject to salt water intrusion are tolerant to a wide range of salinities but phenanthrene degradation in brackish waters is mainly a function of obligate marine microorganisms.  相似文献   

8.
In published literature there are limited studies on the estimation of kinetic parameters of polycyclic aromatic hydrocarbons (PAHs) in soil. In addition, neither the kinetic studies were performed with Gram-positive bacteria nor conducted under non-indigenous condition in order to understand their removal performance. Thus, a mathematical model describing biodegradation of phenanthrene-contaminated soil by Corynebacterium urealyticum, bacterium isolated from municipal sludge, was developed in this study. The model includes three kinetic parameters that were determined using TableCurve 2D software, namely qmax (maximum substrate utilization rate per unit mass of bacteria), X (biomass concentration) and Ks (substrate concentration at one half the maximum substrate utilization rate). These parameters were evaluated and verified in five different initial phenanthrene concentrations. Highest degradation rate was determined to be 79.24 mg kg?1 day?1 at 500 mg kg?1 initial phenanthrene concentrations. This high concentration shows that bacteria perform better in contaminated sand compared to liquid media. High r2 values, ranging from 0.92 to 0.99, were obtained excluding 1000 mg/kg phenanthrene. The kinetic parameters, i.e., qmax and Ks, increased with the phenanthrene concentration and thus suggest that bacteria degrade at a higher degradation rate. This model successfully described the biodegradation profiles observed at different initial phenanthrene concentrations. The established model can be used to simulate the duration of phenanthrene degradation using only the value of the initial PAHs concentration.  相似文献   

9.
Ikeda  K.  Toyota  K.  Kimura  M. 《Plant and Soil》1997,189(1):91-96
Effects of soil compaction on the microbial populations of melon and maize rhizoplane were investigated in quantity and quality. The numbers of culturable bacteria and fluorescent pseudomonads on the rhizoplane were higher when plants were grown in more compacted soil and the relative increase was larger in fluorescent pseudomonads. Total bacterial counts, however, did not appear to be affected by soil compaction, resulting in the increase in the culturable bacteria among total counts in more compacted soil. The determination of extracellular enzymatic properties (pectinase, -glucosidase, -glucosidase and -galactosidase) of each 100 isolates from bulk soil and root samples suggested that the microbial populations on the rhizoplane, especially when plants were grown in highly, compacted soil, were composed of high ratios of bacteria with abilities to utilize root exudates efficiently. The microbial community structure estimated from the colony forming curves of bulk soil and root samples suggested that the microbial populations on the rhizoplane, especially when plants were grown in compacted soil, were likely to be composed of more r-strategists which were defined as those who formed colonies within 2 days.  相似文献   

10.
Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus, L. acidophilus, Streptococcus thermophilus, Lactococcus lactis, Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae-incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.  相似文献   

11.
The biodegradation of phenanthrene by the biosurfactant-producing strain Pseudomonas aeruginosa 19SJ was investigated in experiments with the compound present either as crystals or dissolved in non-aqueous phase liquids (NAPLs). Growth on solid phenanthrene exhibited an initial phase not limited by dissolution rate and a subsequent, carbon-limited phase caused by exhaustion of the carbon source. Rhamnolipid biosurfactants were produced from solid phenanthrene and appeared in solution and particulate material (cells and phenanthrene crystals). During the carbon-limited phase, the concentration of rhamnolipids detected in culture exceeded the critical micelle concentration (CMC) determined with purified rhamnolipids. The biosurfactants caused a significant increase in dissolution rate and pseudosolubility of phenanthrene, but only at concentrations above the CMC. Externally added rhamnolipids at a concentration higher than the CMC increased the biodegradation rate of solid phenanthrene. Mineralization curves of low concentrations of phenanthrene initially dissolved in two NAPLs [2,2,4,4,6,8,8-heptamethylnonane and di(2-ethylhexyl)phthalate] were S-shaped, although no growth was observed in the population of suspended bacteria. Biosurfactants were not detected in solution under these conditions. The observed mineralization was attributed not only to suspended bacteria, but also to bacterial populations growing at the NAPL–water interface, mineralizing the compound at higher rates than predicted by abiotic partitioning. We suggest that rhamnolipid production and attachment increased the bioavailability of phenanthrene, so promoting biodegradation activity.  相似文献   

12.
The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO2 production) and cultivable PAH degrading bacteria at levels of 500–2,600 mg kg−1. In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg−1). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.  相似文献   

13.
Microbial adhesion is an important factor that can influence biodegradation of poorly water soluble hydrocarbons such as phenanthrene. This study examined how adhesion to an oil–water interface, as mediated by 1-dodecanol, enhanced phenanthrene biodegradation by Pseudomonas fluorescens LP6a. Phenanthrene was dissolved in heptamethylnonane and added to the aerobic aqueous growth medium to form a two phase mixture. 1-Dodecanol was non-toxic and furthermore could be biodegraded slowly by this strain. The alcohol promoted adhesion of the bacterial cells to the oil–water interface without significantly changing the interfacial or surface tension. Introducing 1-dodecanol at concentrations from 217 to 4,100 mg l−1 increased phenanthrene biodegradation by about 30% after 120 h incubation. After 100 h incubation, cultures initially containing 120 or 160 mg l−1 1-dodecanol had mineralized >10% of the phenanthrene whereas those incubated without 1-dodecanol had mineralized only 4.5%. The production and accumulation of putative phenanthrene metabolites in the aqueous phase of cultures likewise increased in response to the addition of 1-dodecanol. The results suggest that enhanced adhesion of bacterial cells to the oil–water interface was the main factor responsible for enhanced biodegradation of phenanthrene to presumed polar metabolites and to CO2.  相似文献   

14.
This study describes the biodegradation of phenanthrene in aqueous media in the presence and in the absence of a surfactant, Brij 30. Biodegradations were performed using either Pseudomonas putida DSMZ 8368 or a bacterial consortium Pyr01 isolated from one PAHs-polluted site. P. putida degraded phenanthrene to form 1-hydroxy-2-naphthoic acid (1H2Na) as the major metabolite. LC–MS analysis revealed the production of complementary intermediates in the presence of Brij 30, showing intense ions at mass-to-charge ratios (m/z) 97 and 195. Higher phenanthrene biodegradation rate was obtained in the presence of Brij 30. Conversely, in the case of Pyr01consortium, the addition of Brij 30 (0.5 g L−1) had a negative effect on biodegradation: no phenanthrene biodegradation products were detected in the medium, whereas a production of several intermediates (m/z 97, 195 and 293) was obtained without surfactant. New results on phenanthrene metabolism by P. putida DSMZ 8368 and Pyr01 consortium in the presence and in the absence of Brij 30 we obtained. They confirm that the knowledge of the effect of a surfactant on bacterial cultures is crucial for the optimization of surfactant-enhanced PAHs biodegradation.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-012-0265-z) contains supplementary material, which is available to authorized users.  相似文献   

15.
During the June–August period, 1977, four sets of water and sediment samples were collected for bacteriological analysis, from a salt-fresh water shoreline transect in Northern Canada (51°30 north latitude). Samples were processed for health indicator bacteria, organic sulfur reducing bacteria, ammonifying bacteria, denitrifying bacteria and ATP. Some chemical parameters were also studied. Based on the water classification scheme proposed by Sorokin & Kadota, the total bacterial population found in the sea sampling stations, would indicate that these waters are very eutrophic. The microbial biomass in these waters leads one to suspect that there may be an underestimation of the potential biodegradation capacity of these waters.  相似文献   

16.
Colony hybridizations with a gene probe for enumeration of 2,4-dichlorophenoxy-acetic acid (2,4-D)-degrading bacteria were compared with classical enrichment and radiolabel most-probable-number (MPN) assay methods. Two natural water samples (rivers) and raw sewage were tested by each method. UV scans of enrichment cultures revealed 2,4-D degradation with raw sewage occurred in 4–11 days, 4–>22 days with Mary's River water, and 5–>22 days with Willamette River water. [14C]-2,4-D MPN analysis, measuring release of14CO2, yielded estimates of bacteria per milliliter able to degrade 2,4-D. Raw sewage estimates were 1.4 × 105 2,4-D degraders/ml, Mary's River >1.6 × 105/ml, and Willamette River water 1.6 × 104/ml. Activities noted by UV scan enrichment data supported these results.Autoradiograms of colony blots were also used to estimate numbers of 2,4-D-degrading bacteria. These estimates were also supported by the UV scan data from enrichment cultures. Raw sewage gave counts between 5 × 104 and 2.9 × 105 2,4-D-degrading bacteria/ml, which correlates well with the estimates obtained by14C-MPN analyses. River waters, both much lower in total bacterial counts and organic carbon than raw sewage, yielded fewer 2,4-D-degrading bacteria than estimated by14C-MPN. Media composition and cometabolism may account for discrepancies in estimates for 2,4-D-degrading bacteria observed when colony blot and14C-MPN analyses were compared.Replica plating made it possible to test for 2,4-D biodegradation from colonies reactive in autoradiograms. Five of 12 (42%) colonies reacting in the colony hybridization exhibited biodegradation activities. Nonreactive colonies failed to degrade 2,4-D.  相似文献   

17.
Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum hydrocarbons. Received: 29 December 1998; Accepted: 6 April 1999  相似文献   

18.
Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria.  相似文献   

19.
Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria.  相似文献   

20.
Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day–1 with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号