首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract

The drug design and discovery of lipid modulators is very demanding as no new molecule has entered into the market in the last 35 years. Cholesteryl ester transfer protein (CETP) is a promising target as lipid modulators. Inhibition of the CETP enzyme reduces the risk of cardiovascular events. The first CETP inhibitor torcetrapib and related drug candidates failed in the clinical trial due to the off-target effects leading to high toxicity. Thus, newer CETP inhibitors have now paramount importance to accelerate the drug discovery efforts in the field of cardiovascular disease (CVD). In the present study, 140 benzoxazole compounds were studied by using different chemometric techniques, for example, pharmacophore mapping, molecular docking, three-dimensional quantitative structure–activity relationship comparative molecular field analysis (3D-QSAR CoMFA), topomer CoMFA and Bayesian classification, in order to generate complete and reliable information regarding the structural requirements for the CETP inhibition. The best pharmacophore hypothesis was statistically significant (regression coefficient of 0.957 and a lower root mean square of 0.890). Molecular docking study revealed that cyano-substituted compounds form hydrogen bond with targeted macromolecule. The 3D-QSAR CoMFA model also produced a leave-one-out (LOO) cross-validated Q2 of 0.527, an R2 of 0.853 and an R2Pred of 0.603. Similarly, two topomer CoMFA models were also statistically significant and reliable in terms of their Q2, R2 and R2Pred values. The Bayesian classification study also provided the excellent ROC values of 0.919 and 0.939 for training and test sets, respectively. Overall, this study may help in the rational design of newer benzoxazole type compounds with higher CETP inhibition.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Three-dimensional quantitative structure–activity relationship studies were performed on a series of 88 histamine receptor 4 (H4R) antagonists in an attempt to elucidate the 3D structural features required for activity. Several in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), molecular docking, and molecular dynamics (MD), were carried out. The results show that both the ligand-based CoMFA model (Q 2 = 0.548, R ncv2 = 0.870, R pre2 = 0.879, SEE = 0.410, SEP = 0.386) and the CoMSIA model (Q 2 = 0.526, R ncv2 =0.866, R pre2 = 0.848, SEE = 0.416, SEP = 0.413) are acceptable, as they show good predictive capabilities. Furthermore, a combined analysis incorporating CoMFA, CoMSIA contour maps and MD results shows that (1) compounds with bulky or hydrophobic substituents at positions 4–6 in ring A (R2 substituent), positively charged or hydrogen-bonding (HB) donor groups in the R1 substituent, and hydrophilic or HB acceptor groups in ring C show enhanced biological activities, and (2) the key amino acids in the binding pocket are TRP67, LEU71, ASP94, TYR95, PHE263 and GLN266. To our best knowledge, this work is the first to report the 3D-QSAR modeling of these H4R antagonists. The conclusions of this work may lead to a better understanding of the mechanism of antagonism and aid in the design of new, more potent H4R antagonists.  相似文献   

3.
4.
5.
A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R = R2 = H, R1 = F) and 13 (R = COOCH3, R1 = R2 = H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.  相似文献   

6.
Molecular modeling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3β (GSK-3β) inhibitors. The approaches of comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3β inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3β are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC50 values has the following statistics: R2(cv) = 0.386 nd SE(cv) = 0.854 for the cross-validation, and R2 = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and probability of R2 = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3β. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds.  相似文献   

7.
New silver(I) acylpyrazolonate derivatives [Ag(Q)], [Ag(Q)(PR3)]2 and [Ag(Q)(PR3)2] (HQ = 1-R1-3-methyl-4-R2(CO)pyrazol-5-one, HQBn = R1 = C6H5, R2 = CH2C6H5; HQCHPh2 = R1 = C6H5, R2 = CH(C6H5)2; HQnPe = R1 = C6H5, R2 = CH2C(CH3)3; HQtBu = R1 = C6H5, R2 = C(CH3)3; HQfMe = R1 = C6H4-p-CF3, R2 = CF3; HQfEt = R1 = C6H5, R2 = CF2CF3; R = Ph or iBu) have been synthesized and characterized in the solid state and solution. The crystal structure of 1-(4-trifluoromethylphenyl)-3-methyl-5-pyrazolone, the precursor of proligand HQfMe and of derivatives [Ag(QnPe)(PPh3)2] and [Ag(QnPe)(PiBu3)]2 have been investigated. [Ag(QnPe)(PPh3)2] is a mononuclear compound with a silver atom in a tetrahedrally distorted AgO2P2 environment, whereas [Ag(QnPe)(PiBu3)]2 is a dinuclear compound with two O2N-exotridentate bridging acylpyrazolonate ligands connecting both silver atoms, their coordination environment being completed by a phosphine ligand.  相似文献   

8.
The β2-adrenergic receptor (β2-AR) agonist [3H]-(R,R′)-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4′-methoxyfenoterol analogs in which the length of the alkyl substituent at α′ position was varied from 0 to 3 carbon atoms. The binding affinities of the compounds were additionally determined using the inverse agonist [3H]-CGP-12177 as the marker ligand and the ability of the compounds to stimulate cAMP accumulation, measured as EC50 values, were determined in HEK293 cells expressing the β2-AR. The data indicate that the highest binding affinities and functional activities were produced by methyl and ethyl substituents at the α′ position. The results also indicate that the Ki values obtained using [3H]-(R,R′)-methoxyfenoterol as the marker ligand modeled the EC50 values obtained from cAMP stimulation better than the data obtained using [3H]-CGP-12177 as the marker ligand. The data from this study was combined with data from previous studies and processed using the Comparative Molecular Field Analysis approach to produce a CoMFA model reflecting the binding to the β2-AR conformation probed by [3H]-(R,R′)-4′-methoxyfenoterol. The CoMFA model of the agonist-stabilized β2-AR suggests that the binding of the fenoterol analogs to an agonist-stabilized conformation of the β2-AR is governed to a greater extend by steric effects than binding to the [3H]-CGP-12177-stabilized conformation(s) in which electrostatic interactions play a more predominate role.  相似文献   

9.
10.
New Ba acylpyrazolonate derivatives of formula [Ba(Q)2(tetraglyme)] (HQ = HQtbu = 1-Ph-3-Me-4-C(O)CH2But-5-pyrazolone; tetraglyme = 2,5,8,11,14-pentaoxapentadecane), [Ba(Q)2(tmeda)2] (HQ = HQtbu or HQpiv, where HQpiv = 1-Ph-3-Me-4-C(O)But-5-pyrazolone; tmeda = N,N,N′,N′-tetramethylethylenediamine), [Ba(Q)2(pmdien)(H2O)] (HQ = HQtbu or HQpiv; pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine) and [Ba(Q)2(pmdien)(Meim)] (HQ = HQtbu or HQpiv; Meim = 1-methylimidazole) have been synthesized and analytically and spectroscopically characterized. They are mononuclear air and solution stable compounds containing an eight-coordinated barium atom. The X-ray crystal structures of the hydrates [Ba(Qtbu)2(pmdien)(H2O)] and [Ba(Qpiv)2(pmdien)(H2O)] show the water molecule directly bonded to Ba and involved in intermolecular H-bonding network. In the X-ray crystal structure of [Ba(Qpiv)2(pmdien)(Meim)], the Meim ligand substitutes the water of previous derivatives and decreases the strength of intermolecular interactions, lowering the melting point. The derivative [Ba(Qtbu)2(pmdien)(NEt3)] has been prepared from interaction of [Ba(Qtbu)2(pmdien)(H2O)] with excess triethylamine in acetonitrile.  相似文献   

11.
The reactivity of hybrid scorpionate/cyclopentadienyl ligand-containing trichloride zirconium complexes [ZrCl3(bpzcp)] (1) [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] and [ZrCl3(bpztcp)] (2) [bpztcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl] toward several lithium alkoxides has been carried out. Thus, alkoxide-containing complexes [ZrCl2(OR)(bpzcp)] (R = Me, 3; Et, 4; iPr, 5; (R)-2-Bu, 6), [ZrCl2(OR)(bpztcp)] (R = Me, 7; Et, 8; iPr, 9; (R)-2-Bu, 10) and [Zr(OR)3(bpztcp)] (R = Et, 11; iPr, 12) were prepared by deprotonation of the appropriate alcohol group with BunLi followed by reaction with 1 or 2. In addition, the imido-complex [Ti(NtBu)Cl(bpztcp)(py)] (13) were also prepared. The structures of these complexes have been proposed on basis of spectroscopic and DFT methods.  相似文献   

12.
13.
Silver(I) acylpyrazolonate derivatives of formula [Ag(Q)(R3P)]2 and [Ag(Q)(R3P)2], (QH=1-phenyl-3-methyl-4-R′(CO)-pyrazol-5-one; QOH, R′=furane; QSH, R′=thiophene; R=Ph, Cy, o-tol), have been synthesised and characterised, both in the solid state and in solution. The derivatives [Ag(Q)(R3P)]2 contain dinuclear AgO2NP units with the acylpyrazolonate coordinating in a bridging O,O′-Q-N fashion. The [Ag(Q)(R3P)2] are tetrahedral species, with the distortion from ideal geometry increasing with the bulk of the phosphine. The [Ag(Q)(R3P)2] derivatives are fluxional in chloroform solution when R3P is sterically hindered (R=Cy or o-tol), dissociating partially to the [Ag(Q)(R3P)] fragment and free R3P. [Ag(QS)(Ph3P)]2 reacts with 1-methyl-2-mercaptoimidazole (Hmimt) affording the compound [Ag(Hmimt)(Ph3P)(QS)] and [Ag(QO)(Ph3P)]2 reacts with 1-methyl-imidazole (Meim) affording the compound [Ag(Meim)(Ph3P)(QO)], whereas [Ag(QS)(Ph3P)]2 reacts with 1,10-phenanthroline (phen), affording the compound [Ag(phen)(Ph3P)](QS). Finally [Ag(QS)(Ph3P)2] reacts with phen producing the ionic species [Ag(phen)(Ph3P)2](QS).  相似文献   

14.
In an age-structured population that grows exponentially, each age groupP i(t) at periodt is asymptotically equivalent tox 0 t for some positive number x0. In this paper we show that the speed at which the ith age group reaches its exponential state of equilibrium can be measured by the rate at which the ratio vi(t)=Pi(t)/pi(t–1) converges tox 0. The age specific rate of convergence is determined by considering a quantityr satisfyingv i(t)-x 0 ¦ r t whent is large;R i=Infr (over all initial populations,r satisfying the above inequality) is the R-factor used in numerical analysis to measure the rate at which the sequencev i (t) converges tox 0;S i =- In Ri is then defined as the rate of convergence to stability of the ith age group. The case of constant net maternity rates is studied in detail; in this contextS 0 is compared to the population entropyH, which was proposed by Tuljapurkar (1982) as a measure of the rate of convergence to stability.  相似文献   

15.
Abstract

Darifenacin, (S)-2-[1-[2,3-dihydrobenzofuran-5-yl]-3-pyrrolidinyl]-2,2-diphenylacetamide, is a novel muscarinic M3 antagonist. In this study we have compared the binding of [3H]-darifenacin to the five cloned human muscarinic receptors (m1 - m5) expressed in CHO cells. [3H]-darifenacin binds with 6 fold higher affinity to m3 (KD = 0.33 nmol/l) over m1 (KD = 1.6 nmol/l) receptors. There was no specific binding of [3H]-darifenacin to m2 receptors and specific binding to m4 and m5 receptors was insufficient to determine a KD. Binding of [3H]-darifenacin to m1 and m3 was displaced by atropine (m1 pKi = 9.36, m3 pKi = 9.4), 4-DAMP (m1 pKi = 9.04, m3 pKi = 9.19), pirenzepine (m1 pKi = 8.63, m3 pKi = 6.85), methoctramine (m1 pKi = 7.28, m3 pKi = 6.63), and darifenacin (m1 pKi = 8.36, m3 pKi = 9.14), demonstrating that [3H]-darifenacin represents the first selective m3 radioligand.  相似文献   

16.
17.
Novel classes of cannabinoid 2 receptor (CB2) agonists based on 1,2,3,4-tetrahydropyrrolo[3,4-b]indole and benzimidazole scaffolds have shown high binding affinity toward CB2 receptor and good selectivity over cannabinoid 1 receptor (CB1). A computational study of comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was performed, initially on each series of agonists, and subsequently on all compounds together, in order to identify the key structural features impacting their binding affinity. The final CoMSIA model resulted to be the more predictive, showing cross-validated r2 (rcv 2) = 0.680, non cross-validated r2 (rncv 2) = 0.97 and test set r2( rpred2 ) = 0.93 {{\hbox{r}}^2}\left( {{\hbox{r}}_{\rm{pred}}^2} \right) = 0.{93} . The study provides useful suggestions for the design of new analogues with improved affinity.  相似文献   

18.
Summary The effect of pH buffers and related compounds on the conductance of an outwardly rectifying anion channel has been studies using the patch-clamp technique. Single-channel current-voltage relationships were determined in solutions buffered by trace amounts of bicarbonate and in solutions containing N-substituted taurines (HEPES, MES, BES, TES) and glycines (glycylglycine, bicine and tricine), Tris andbis-Tris at millimolar concentrations. HEPES (pKa=7.55) reduced the conductance of the channel when present on either side of the membrane. Significant inhibition was observed with 0.6mm HEPES on the cytoplasmic side (HEPES i ) and this effect increased with [HEPES i ] so that conductance at the reversal potential was diminished 25% with 10mm HEPES i )and 70% at very high [HEPES i ]. HEPES i block was relieved by applying positive voltage but positive currents were not consistent with a Woodhulltype blocking scheme in that calculated dissociation constants and electrical distances depended on HEPES concentration. Results obtained by varying total HEPES i concentration at constant [HEPES] and vice versa suggest both the anionic and zwitterionic (protonated) forms of HEPES inhibit. Structure-activity studies with related compounds indicate the sulfonate group and heterocyclic aliphatic groups are both required for inhibition from the cytoplasmic side. TES (pKa=7.54), substituted glycine buffers (pKa=8.1–8.4) andbis-Tris (pKa=6.46) had no measurable effect on conductance and appear suitable for use with this channel.  相似文献   

19.
A Comparative Molecular Similarity Indices Analysis (CoMSIA) was performed for 2,6-substituted-4-monosubstituted aminopyrimidine antagonists of prostaglandin D2 receptor (DP). Both two-component (Q2 = 0.63, R2 = 0.82, SEE = 0.47 pIC50) and three-component (Q2 = 0.70, R2 = 0.91, SEE = 0.36 pIC50) CoMSIA models were established. Two hydrogen-bond acceptors with spatial separation of about 8 Å are shown as optimal for binding. A large hydrophobic center that separates the two acceptors confers to the potency of the 2,6-substituted-4-monosubstituted aminopyrimidine. The models were used to predict IC50 values for compounds which had functional groups different from those in the training set.  相似文献   

20.
Bis(azido)bis(phosphine)-Pd(II) and -Pt(II) complexes, [M(N3)2L2] {L = PMe3, PEt3, PMe2Ph, dppe = 1,2-bis(diphenylphosphino)ethane}, underwent 1,3-dipolar cycloaddition with organic chiral isothiocyanates (R-NCS: R = (S)-(+)-1-phenylethyl, (R)-(−)-1-phenylethyl, (±)-1-phenylethyl, (S)-(+)-1-indanyl) to give the corresponding tetrazole-thiolato Pd(II) and Pt(II) complexes, trans-[M{S[CN4(R)]}2L2] or [M{S[CN4(R)]}2(dppe)]. Spectroscopic (IR and NMR) and X-ray structural analyses of the products showed that the absolute configuration of the starting organic isothiocyanates is retained throughout the reaction. Further treatments of the isolated tetrazole-thiolato complexes with electrophiles such as HCl or benzoyl chloride produced heterocyclic compounds containing a tetrazole thione or a tetrazolyl sulfide group. In addition, organic tetrazole thiones, [S = {CN4H(R)}] containing a chiral moiety, were prepared from NaN3 and R-NCS in the presence of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号