首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Diversity and classification of mycorrhizal associations   总被引:1,自引:0,他引:1  
Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.  相似文献   

2.
We documented the patterns of root occupancy by Glomalean and ectomycorrhizal (EM) fungi in Quercus agrifolia, and host plant responses to inoculation with each mycorrhizal type alone or in combination. Glomalean hyphae, coils and vesicles, and EM root tips were recorded. Colonization patterns conformed to a succession from Glomalean and EM fungi in 1-year-old seedlings to predominantly EM in saplings (>11 years old); both mycorrhizal types were rarely detected within the same root segment. Inoculation of Q. agrifolia seedlings with EM or Glomalean fungi (AM) alone or in combination (EM+AM) altered the cost:benefit relationship of mycorrhizas to the host plant. Seedling survival, plant biomass, foliar nitrogen (N), and phosphorus (P) status were greatest in EM- or AM-only inoculated seedlings. Seedlings inoculated with both mycorrhizal types (AM+EM) exhibited the lowest survival rates, biomass, foliar N, and P levels. Roots of these plants were highly colonized by both EM (38% root length colonized) and Glomalean fungi (34%). Because these levels of colonization were similar to those detected in 1-year-old field seedlings, the presence of both mycorrhizal types may be a carbon cost and, in turn, less beneficial to oaks during establishment in the field. However, the shift to EM colonization in older plants suggests that mycorrhizal effects may become positive with time.  相似文献   

3.
Fungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P. involutus in the presence of labelled Postia necromass (15N/13C) as nutrient source, and a monoxenic mycorrhized pine experiment composed of labelled Postia necromass and P. involutus culture in interaction with pine seedlings. The isotopic labelling was measured in both experiments. In pure culture, P. involutus was able to mobilize N, but C as well, from the Postia necromass. In the symbiotic interaction experiment, we measured high 15N enrichments in all plant and fungal compartments. Interestingly, 13C remains mainly in the mycelium and mycorrhizas, demonstrating that the EM fungus transferred essentially N from the necromass to the tree. These observations reveal that fungal organic matter could represent a significant N source for EM fungi and trees, but also a C source for mycorrhizal fungi, including in symbiotic lifestyle.  相似文献   

4.
Arbuscular mycorrhizae (AM) fungi affect nutrient uptake for host plants, while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere. An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus (M+ vs. M ) and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus (L+ vs. L ), where the compartments are connected either by nylon mesh of 20 μm or 0.45 μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment (N+ vs. N ). Plant biomass and nutrients were measured. The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization, spore, and hyphal density, which when in association with the host plant then affected the biomass, and accumulations of N (nitrogen) and P (phosphorus) in the individual plant as well as root, stem, and leaf respectively. AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues. A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment. The results indicate that the C. camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks. These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.  相似文献   

5.
We investigated the effect of mineral nitrogen forms on transfer of nitrogen (N) and zinc (Zn) from attached compartments to rhodes grass (Chloris gayana) colonised with arbuscular mycorrhizal fungi (AMF). After being pre-cultivated in substrates with adequate nutrient supply and either AMF inoculated (+AM) or left non-inoculated (?AM), rhodes grass was positioned adjacent to an outer compartment holding a similar substrate but applied with labelled nitrogen (15N) either as ammonium (NH4 +) or nitrate (NO3 ?), and a high supply of Zn (150 mg kg?1 DS). Plant roots together with fungal mycelium were either allowed to explore the outer compartment (with root access) or only mycorrhizal hyphae were allowed (without root access). Within each access treatment, biomasses of rhodes grass were not significantly affected by AMF inoculation or N form. AMF contribution to plant 15N uptake was about double in NH4 + compared with NO3 ?-supplied treatments while the mycorrhizal influence on plant Zn uptake was insignificant. Without root access, the shoot 15N/Zn concentration ratio was up to ten-fold higher in +AM than –AM treatments and this ratio increase was clearly more pronounced in NH4 + than NO3 ?-supplied treatments. In conclusion, rhodes grass in symbiosis with the tested AMF acquired more N when supplied with ammonium. Moreover, there is clear indication that although the AMF have transported both nutrients (N and Zn), N was preferentially transferred as compared to Zn. We confirmed that, while rhodes grass is not able to prevent excessive Zn uptake via roots under conditions of high Zn, mycorrhiza is able to avoid excessive Zn supply to the host plant when the fungus alone has access to contaminated patches.  相似文献   

6.
Mycorrhizas are mutually beneficial associations between soil-borne fungi and plant roots. Mycorrhizal fungi provide their host plant with essential nutrients in exchange for sugars and/or lipids. Traditionally, transport and translocation of macronutrients, including nitrogen and phosphorus, throughout the fungal mycelium and towards the host plant are well studied. However, the regulation of nutrient exchange and their contribution in the morphogenesis and development of mycorrhizas remains unclear. In this Opinion, we argue that adding micronutrients in the current models of symbiotic transport is essential to fully understand the establishment, maintenance, and functioning of mycorrhizal associations. Homeostatic mechanisms at the cellular level and the first transport proteins involved have been recently documented for zinc (Zn) in arbuscular mycorrhizal, ectomycorrhizal, and ericoid mycorrhizal fungi. Mycorrhizal plants benefit from an improved Zn status in control conditions and are better protected when environmental Zn availability fluctuates. These recent progresses are paving the way for a better understanding of micronutrient allocation in mycorrhizas. Revising our vision on the role of micronutrients, particularly of Zn, in these interactions will allow a better use of mycorrhizal fungi in sustainable agriculture and forestry, and will increase management practices in waste land, as well as in agricultural and natural ecosystems.  相似文献   

7.
Vesicular-arbuscular mycorrhizae may increase resistance of plants to drought by a number of mechanisms, such as increased root hydraulic conductivity, stomatal regulation, hyphal water uptake and osmotic adjustment. However, a substantial contribution of vesicular-arbuscular mycorrhizal (VAM) hyphae to water uptake has not been demonstrated unequivocally. The objective of this investigation was to examine the contribution of hyphae from two VAM fungi to water uptake and transport by the host plant. Lettuce (Lactuca sativa L.) plants were grown in a container divided by a screen into two compartments. One was occupied by roots, the other only by VAM hyphae, which the screen permitted to pass. Roots were colonized by the VAM fungi Glomus deserticola or Glomus fasciculatum, or were left uninoculated but P-supplemented. Water was supplied to the hyphal compartment at a distance of 10 cm from the screen (root). CO2 exchange rate, water-use efficiency, transpiration, stomatal conductance and photosynthetic phosphorus-use efficiency of VAM or P-amended control plants were evaluated at three levels of water application in the hyphal compartment. Results indicate that much of the water was taken up by the hyphae in VAM plants. VAM plants, which had access to the hyphal compartment, had higher water and nutrient contents. G. deserticola functioned efficiently under water limitation and mycelium from G. fasciculatum-colonized plants was very sensitive to water in the medium. This discrepancy in VAM behaviour reflects the various abilities of each fungus according to soil water levels. Different abilities of specific mycelia were also expressed in terms of nutritional and leaf gas-exchange parameters. G. fasciculatum caused a significant increase in net photosynthesis and rate of water use efficiency compared to G. deserticola and P-fertilized plants. In contrast, the G. deserticola treatment was the most efficient affecting N, P and K nutrition, leaf conductance and transpiration. Since no differences in the intra- and extra-radical hyphal extension of the two endophytes were found, the results demonstrate that mycorrhizal hyphae can take up water and that there are considerable variations in both the behaviour of these two VAM fungi and in the mechanisms involved in their effects on plant water relations.  相似文献   

8.
全球变化下菌根真菌的作用及其作用机制   总被引:2,自引:0,他引:2  
梁倩倩  李敏  刘润进  郭绍霞 《生态学报》2014,34(21):6039-6048
全球气候、环境、经济与社会的发展变化,对环境与资源造成严重挑战和新的发展机遇。菌根真菌是陆地生态系统中的重要生物组份,占据不可替代的重要地位,充当调控生态系统稳定和保持可持续发展的多重角色。分析了全球变化对菌根真菌的影响,探讨了全球变化下菌根真菌的地位、角色和作用,以及菌根真菌应对全球变化的可能作用机制,旨在为加强全面应对全球变化提供新的思路和途径。  相似文献   

9.
Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions containing P. However, Glomus intraradices produced significantly more spores in plant roots in the tap water control treatment. The effect of the nutrient solutions was not due solely to N nutrition, because the addition of NH4NO3 decreased both colonization and sporulation by G. margarita relative to levels produced by Hoagland solution without P.  相似文献   

10.
Abstract. The few surveys made and taxonomic considerations suggest that African dry forests are commonly diverse and dominated by vesicular-arbuscular mycorrhizal, VAM tree species. Ectomycorrhizal, ECM tree species are usually absent or occur in small numbers, but occasionally dominate. Nitrogen-fixing species (which also mostly form VAM) are, in general, few. Theoretical considerations and the limited data available suggest that phosphorus is the limiting nutrient. This probably explains the paucity of N2-fixing species. It is more difficult to explain why VAM-species and not ECM-species dominate, or vice versa, in situations where P is limiting. A dominance of either type will be reinforced by processes mediated by hyphal networks. Because few taxa form ECM, such processes will promote the development of low diversity stands, whereas very many species can share the benefits of a VAM-network. Fertilizer trials are needed to identify precisely the limiting nutrient(s), and the reactions of species with different root symbioses to additions of N and P. In connection with such studies the fractional contribution of N2 to N2-fixing spp. can be estimated by 15N-methodology. Analogous possibilities do not exist for work on mycorrhizas, but comparative studies of A-values, or phosphatase and protease activities would be worthwhile. A promising approach would be studies of ECM-and VAM-seedlings transplanted into a variety of sites, including each other's habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号