首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Ralstonia solanacearum is an economically important, bacterial plant pathogen which affects a wide range of crop plants. R. solanacearum survives in the soil for many years and weeds serve as symptomless carrier. One of the important aspects in controlling R. solanacearum is its early detection. In this study, detection threshold of R. solanacearum in the soil was standardised using polymerase chain reaction (PCR) method. The minimum threshold limit ranged between 6.8 × 10 and 3.6 × 102 CFU g?1 of soil. Using this standardised protocol R. solanacearum was detected from the rhizosphere soil of eggplants showing varying degrees of wilt. PCR method was quite sensitive to detect R. solanacearum from the xylem fluid of eggplant. Presence of R. solanacearum in the soil infected with capsicum wilt was also demonstrated successfully and the minimum detection limit was 4 × 102 CFU g?1 of soil. The bacterium was not detected from the eggplant seeds collected during 2006 and 2007 seasons. However, the bacterium was detected from the weed (Alternanthera sessilis) grown in the eggplant field indicating the possibility of weeds serving as symptomless carrier. Using our method, it is possible to detect R. solanacearum from soil, plant and weeds grown in the field at an early stage so that proper management strategies could be taken to prevent the infection and further spread of the pathogen.  相似文献   

2.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

3.
对番茄内生细菌数量动态及其对青枯病的生物防治研究结果表明:番茄内生细菌可来源于种子内部。番茄不同生育期,内生细菌数量最多在成株期,其中抗病品种根、茎分别为24.3×104CFU/g鲜重和22.9×104CFU/g鲜重,感病品种根、茎分别为9.8×104CFU/g鲜重和13.4×104CFU/g鲜重。抗病品种中具有拮抗青枯菌的内生细菌菌株为17个,感病品种中7个。部分内生细菌具促进番茄种子萌发和防治番茄青枯病的作用,其中5R和3R内生菌株的防病效果分别达91.7%和81.3%。  相似文献   

4.
Bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi et al. (Microbiol Immunol 39:897–904, 1995) is a serious disease, which causes losses up to 60 % depending on environmental conditions, soil property, and cultivars. In present investigation, nucleotide sequences of virulence, hypersensitive response and pathogenicity (hrp) gene were used to design a pair of primer (Hrp_rs 2F: 5′-AGAGGTCGACGCGATACAGT-3′ and Hrp_rs 2R: 5′-CATGAGCAAGGACGAAGTCA-3′) for amplification of bacterial genome. The genomic DNA of 27 isolates of R. solanacearum race 1 biovar 3 & 4 was amplified at 323 bp. The specificity of primer was tested on 13 strains of R. solanacearum with other group of bacteria such as Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and X. citri subsp. citri. Primer amplified DNA fragment of R. solanacearum at 323 bp. The sensitivity of the primer was 200 cfu/ml and improved further detection level by using non-specific enrichment medium casamino acids-pepton-glucose broth followed by PCR (BIO-PCR). Out of 130 samples of asymptomatic tomato plants, irrigation water, and soil collected from bacterial wilt infested field in different agro-climatic regions of India, R. solanacearum was detected from 86.9, 88.5, and 90.9 per cents samples using BIO-PCR, respectively. The primer was found specific for detecting viable and virulent strains of R. solanacearum and useful for the diagnosis of R. solanacearum in tomato seedlings and monitoring of pathogen in irrigation water and soil.  相似文献   

5.
Pseudomonas solanacearum was transmitted from contaminated seed to the cotyledons of capsicum (Capsicum frutescens) at 92, 73 and 60% r. h. and to the cotyledons of tomato (Lycopersicon esculentum) seedlings at 92% r. h. Subsequent epiphytic colonisation of the true leaves of capsicum occurred at 92 and 73% r. h. An increase in the population on capsicum cotyledons was detected at 92 and 73% r. h. but only at the higher r. h. was an increased population of P. solanacearum associated with the colonisation of the true leaves. Lesions developed on the true leaves of capsicum at 92% r. h. Transmission of P. solanacearum from capsicum seeds was affected by inoculum concentration, occurring at an infestation level of ∽ 103 propagules seed-1 but not at 50 propagules seed-1. Pseudomonas solanacearum was detected on the cotyledons of capsicum held at 98% r. h. after germination of seed in soil infested with 2 × 108 propagules g-1 soil; lesions were detected on cotyledons 11 days after planting and invasion occurred in 10 stems and one root of the 20 seedlings sampled. The movement of the pathogen from the soil to the seedlings was affected by the level of soil infestation. Pseudomonas solanacearum was detected in four pairs of cotyledons, two stems and one root of the 36 seedlings sampled from soil infested with 107 propagules g-1 soil but it was not isolated from seedlings sampled from soil infested with 105 or 4 × 103 propagules g-1 soil. Leaf and stem prints demonstrated the epiphytic nature of this organism on the cotyledons and stems of seedlings.  相似文献   

6.
Ralstonia solanacearum is the causative agent of bacterial wilt in many important crops. A specific and sensitive PCR detection method that uses primers targeting the gene coding for the flagella subunit, fliC, was established. Based on the first fliC gene sequence of R. solanacearum strain K60 available at GenBank, the Ral_fliC PCR primer system was designed; this system yielded a single 724-bp product with the DNAs of all of the R. solanacearum strains tested. However, R. pickettii and four environmental Ralstonia isolates also yielded amplicons. The Ral_fliC PCR products obtained with 12 strains (R. solanacearum, R. pickettii, and environmental isolates) were sequenced. By sequence alignment, Rsol_fliC primers specific for R. solanacearum were designed. With this primer system, a specific 400-bp PCR product was obtained from all 82 strains of R. solanacearum tested. Six strains of R. pickettii and several closely related environmental isolates yielded no PCR product; however, a product was obtained with one Pseudomonas syzygii strain. A GC-clamped 400-bp fliC product could be separated in denaturing gradient gels and allowed us to distinguish P. syzygii from R. solanacearum. The Rsol_fliC PCR system was applied to detect R. solanacearum in soil. PCR amplification, followed by Southern blot hybridization, allowed us to detect about one target DNA molecule per PCR, which is equivalent to 103 CFU g of bulk soil−1. The system was applied to survey soils from different geographic origins for the presence of R. solanacearum.  相似文献   

7.
Bacterial wilt, caused by Ralstonia solanacearum, is one of the most serious diseases of tomato (Solanum lycopersicum). Concomitant infection of R. solanacearum and root‐knot nematode Meloidogyne incognita increases the severity of bacterial wilt in tomato, but the role of this nematode in disease complexes involving bacterial pathogens is not completely elucidated. Although root wounding by root‐knot nematode infection seems to play an important role, it might not entirely explain the increased susceptibility of plants to R. solanacearum. In the present study, green fluorescent protein (GFP)‐labelled R. solanacearum distribution was observed in the root systems of the tomato cultivar Momotaro preinoculated with root‐knot nematode or mock‐inoculated with tap water. Fluorescence microscopy revealed that GFP‐labelled R. solanacearum mainly colonized root‐knot nematode galls, and little or no green fluorescence was observed in nematode‐uninfected roots. These results suggest that the gall induced by the nematode is a suitable location for the growth of R. solanacearum. Thus, it is crucial to control both R. solanacearum and root‐knot nematode in tomato production fields to reduce bacterial wilt disease incidence and effects.  相似文献   

8.
Abstract

Surveys were conducted between the years of 2005 and 2006 at several locations in the northern, central and southern parts of West Malaysia to study the polymorphism of Ralstonia solanacearum strains. These sites included vegetables and farms with known hosts of the pathogen, such as banana, tomato, eggplant, chili and tobacco. Samples were collected from the suspected wilted plants and weeds, including soil and water samples, in selected areas. The bacterium was isolated in all samples using semi-selective tetrazolium chloride medium (TZC). The bacteria strains were detected by using the BIOLOG identification system and were confirmed by nested-PCR. Fatty Acid Methyl Esters (FAME) profiling was performed to determine polymorphism among 58 bacterial isolates. The results showed that the fatty acid composition varied for all R. solanacearum isolates. Grouping of R. solanacearum isolates by fatty acid composition suggested that the existence of distinct groups that were significantly related to host of bacteria but low correlation between fatty acid profiles and biovar or sampling site was detected. A unique FAME profile was found among the strains that have been isolated from banana.  相似文献   

9.
A species‐specific Polymerase Chain Reaction (sPCR) method was developed to identify and detect isolates of Ralstonia solanacearum, the cause of bacterial wilt disease in chilli. PCR primers for R. solanacearum were identified by alignment of hrpB gene sequences and selection of sequences specific for R. solanacearum at their 3′ ends. The primers were shown to be specific for R. solanacearum, as no PCR product was obtained when genomic DNA from other bacterial species including closely related Ralstonia species, were used as test species. Lone pair of primers (RshrpBF and RshrpBR) was designed using hrpB gene sequence, unique to R. solanacearum which amplified a predicted PCR product of 810 bp from 20 different isolates. Phylogenetic analysis was also attempted to understand the evolutionary divergence of Indian R. solanacearum isolates. Based on phylogenetic analysis, Indian isolates showed homology with the standard reference isolates from other countries but, interestingly, one new isolate showed complete evolutionary divergence by forming an out‐group.  相似文献   

10.
Aims: To evaluate the effectiveness of the optimized immunomagnetic separation (IMS)‐plating protocol in relation to other culture, serological and molecular techniques currently used for Clavibacter michiganensis subsp. michiganensis in seed‐testing laboratories. Methods and results: Bacterial suspensions, tomato seed extracts spiked with the pathogen and naturally infected seeds were IMS‐plated for the detection of C. m. subsp. michiganensis. These results were compared with plating on general (YPGA) and semiselective (mSCM) media, double‐antibody sandwich enzyme‐linked immunosorbent assay (DAS‐ELISA), immunofluorescent assay (IF) or polymerase chain reaction (PCR). Different seed lots and pathogen strains were also tested. IMS‐plating allowed the detection of less than 10 CFU ml?1 of pathogen in all assayed samples. The mSCM medium provided positive results for 10 CFU ml?1 in naturally infected seeds, but up to 14 days was necessary for the typical colonies of the target to be come visible. By serological techniques, 103 and up to 104 CFU ml?1 were detected by IF and ELISA, respectively. DNA extraction was required to obtain positive results by PCR in seed extracts containing 103 CFU ml?1 or more. Conclusions: Among the evaluated methods, IMS‐plating provided the best results regarding sensitivity and specificity for C. m. subsp. michiganensis detection, allowing the recovery of viable bacteria from seed extracts. Significance and impact of the study: IMS‐plating increases isolation rates of C. m. subsp. michiganensis and could improve standard protocols currently used for routine analysis.  相似文献   

11.
A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty‐two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 × 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative‐stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive‐stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.  相似文献   

12.
Experiments were performed under greenhouse conditions to control bacterial wilt of potato (potato brown rot), caused by Ralstonia solanacearum race 3 biovar 2, Phylotype II, sequevar 1 using various biocontrol strategies. These strategies involved the use of the bacterial biocontrol agent Stenotrophomonas maltophilia (PD4560), in clay or sandy soils, planted with cowpea, maize or tomato which was grown separately in different pots in the inoculated soils. After harvest, the soil derived from each cultivated crop was inoculated with a mixture of three virulent R. solanacearum strains (K3, K10 and K16) to achieve a final concentration of 5 × 10cfu/g dry soil and used in pots under greenhouse conditions to cultivate potato seed tubers. The highest survival of S. maltophilia in soil (more than 160 days) coincided with a remarkable suppressing effect on disease incidence caused by R. solanacearum that expressed by wilt severity (up to 100% reduction), area under disease progress curve (AUDPC) (up to 99% reduction) and counts of the pathogen in soil (up to 75% reduction), rhizosphere (up to 80% reduction) and plant tissue (up to 97% reduction) of potato plants. The amino acid analysis of root exudates of crops under investigation revealed high percentages of asparagines (15.5–21%), glutamine (16–20%) and sulphur‐containing methionine (7–9%) in both of the cowpea and maize, respectively. In tomato root exudates, high percentages of arginine (around 26%) and lysine (around 23%) were detected. Methionine is known to favour the growth of S. maltophilia suggesting that especially cowpea and maize are suitable for crop rotation with potato and will enhance the sustainability of the biocontrol agent S. maltophilia.  相似文献   

13.
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.  相似文献   

14.
15.
Treatments with conidia of Penicillium oxalicum produced in a solid‐state fermentation system were applied at similar densities (6 × 106 spores/g seedbed substrate) to tomato seedbeds in water suspensions (T1: 5 days before sowing, or T2: 7 days before transplanting; 15 days after sowing), or in mixture with the production substrate (T3: 7 days before transplanting; 15 days after sowing). Treatments T2 and T3 significantly (P = 0.05) reduced fusarium wilt of tomato in both greenhouse (artificial inoculation) (33 and 28%, respectively) and field conditions (naturally infested soils) (51 and 72%, respectively), while treatment T1 was efficient only in greenhouse (52%). Verticillium wilt disease reduction was obtained with T3 in two field experiments (56 and 46%, respectively), while T1 and T2 reduced disease only in one field experiment (52% for both T1 and T2). Treatment with conidia of P. oxalicum plus fermentation substrate (T3) resulted in better establishment of a stable and effective population of P. oxalicum in seedbed soil and rhizosphere providing populations of approx. 107 CFU/g soil before transplanting. Results indicate that it will be necessary to apply P. oxalicum at a rate of approx. 106–107 CFU/g in seedbed substrate and rhizosphere before transplanting for effective control of fusarium and verticillium wilt of tomato, and that formulation of P. oxalicum has a substantial influence on its efficacy.  相似文献   

16.
The role of the dormant-like viable but nonculturable (VBNC) condition in the etiology of bacterial infection was examined using a plant system. The plant-pathogenic bacterium Ralstonia solanacearum was first shown to enter into the VBNC state both in response to cupric sulfate when in a saline solution and when placed in autoclaved soil. To determine if the VBNC condition is related to pathogenesis, the physiological status of bacteria recovered from different regions of inoculated tomato plants was determined at different stages of infection. The fraction of in planta bacteria that were VBNC increased during infection and became greater than 99% by the late stage of disease. The possibility that soil-dwelling VBNC bacteria may resuscitate and infect plants was also examined. When tomato seeds were germinated in sterile soil that contained VBNC but no detectable culturable forms of R. solanacearum cells, resuscitation was observed to occur in soil adjacent to plant roots; these resuscitated bacteria were able to infect plants. This is the first report of R. solanacearum entering the VBNC state and of resuscitation of any VBNC plant-pathogenic bacteria and provides evidence that the VBNC state may be involved in explaining the persistent nature of some infections.  相似文献   

17.
The mixture of Bacillus subtilis strain SM21 and Bacillus cereus strain AR156, referred to as ASB, is a biopesticide in the process of registration in China, which has the capacity of controlling root-knot nematode in cucumber, Phytophthora wilt in pepper and Ralstonia wilt in tomato. In this study, we tested its effects on a range of physiological indicators of plant growth including biomass, yield, chlorophyll content and fruit nutrients of pepper, as well as, its efficacy in controlling bacterial wilt caused by Ralstonia solanacearum under field conditions in 2009 and 2010 by a variety of inoculation methods. Three application methods – soaking seeds, drenching soil around seeds right after sowing and drenching the rhizosphere of transplanted seedling with the aqueous solution (as a soil drench) –and three concentrations of ASB (1.0 × 106 CFU/mL, 1.0 × 107 CFU/mL, and 1.0 × 108 CFU/mL) were employed. The results showed that both soaking seeds with ASB at 1.0 × 107 CFU/mL as well as drenching rhizosphere with ASB at 1.0 × 106 CFU/mL and 1.0 × 107 CFU/mL promoted growth, increased yield and fruit nutrient contents of pepper. The combination of these two inoculation methods led to significant increases in growth and fruit nutrient contents. We found that the most effective way was the combination of soaking seeds with the ASB at 1.0 × 107 CFU/mL and drenching rhizosphere with it at 1.0 × 106 CFU/mL, which is also easy for Chinese farmers to implement.  相似文献   

18.
M. Satou    M. Kubota    K. Nishi 《Journal of Phytopathology》2006,154(10):592-597
Two model systems were constructed to measure horizontal and vertical movement of bacteria in soil. These systems were applied to measuring movement of Ralstonia solanacearum (race 1, biovar 3), a causal agent of bacterial wilt of tomato, in andosol and sand at 28°C. The first system was used to measure horizontal movement of the bacteria in soil packed in a narrow horizontal frame. Suspension of the pathogen was applied to soil at one end of the frame, and bacterial number per gram of soil was measured over distance from the inoculation point after 4 days. Horizontal movement of R. solanacearum in supersaturated soil, but without flow, was possibly due to diffusion and the front advanced at 2.2 cm/day in andosol, and at 8.1 cm/day in sand. Using the same experimental system, but applying water inflow to one end of the frame only, the bacterium was detected at the front of water in andosol and sand. The front of the distribution advanced at 20.4 cm/h in andosol and 66.3 cm/h in sand. In the second experimental system, a cylinder of soil packed in a short tube was soaked with water, and soil at the top of the tube was inoculated with bacterial suspension. Immediately, soil cylinders were turned upward, and the bacterial number per gram of soil was measured along vertical distance from the inoculation point after 7 days. Using the system with andosol, the capillary water front rose to 32.5 cm over 7 days after inoculation, and R. solanacearum reached to 18.8 cm height. In sand, capillary water rose to 20.0 cm and the bacteria reached to 16.3 cm height.  相似文献   

19.
Ralstonia solanacearum is responsible for bacterial wilt affecting many crops worldwide. The emergent population of R. solanacearum (phylotype IIB/4NPB) wilts previously resistant varieties and has rapidly spread throughout Martinique. No conventional method is known to control it. In this study, previous crops used as sanitizing crops were investigated as an environmentally safe alternative method of control. The ability of the emergent population of R. solanacearum to persist in planta and in the rhizosphere of Brassicaceae, Asteraceae and Fabaceae grown as previous crops was evaluated in controlled conditions, and the incidence of bacterial wilt was assessed in the following tomato crop. Results showed that all species carried R. solanacearum latently. Among Brassicaceae and Asteraceae, the highest density of R. solanacearum was found in planta and in the rhizosphere of Tagetes erecta. The density of the R. solanacearum population in the rhizosphere of Raphanus sativus cv. Karacter was significantly higher than that in Raphanus sativus cv. Melody. In Fabaceae, the density of R. solanacearum population in planta was statistically similar in all species. The density of the R. solanacearum population in the rhizosphere of Crotalaria juncea was significantly higher than that in Crotalaria spectabilis. This study showed for the first time that Crotalaria spectabilis and Raphanus sativus cv. Melody grown as previous crops improve the performance of the following tomato with similar effects on R. solanacearum populations in the soil as bare soil. The incidence of the disease in tomato decreased by 86% and 60%, after R. sativus cv. Melody and C. spectabilis, respectively, and the proportion of infected plants also decreased. These results suggest that C. spectabilis and R. sativus cv. Melody can be used as previous crops to help bacterial wilt control in ecological management strategies without drastic suppression of R. solanacearum population in stem tissues and in the rhizosphere.  相似文献   

20.
Detection of Clavibacter michiganensis subsp. michiganensis (Cmm), causing bacterial canker of tomato, was verified using PTA-ELISA and IFAS with PAbs of Neogen Europe Ltd. (UK), and with published and also laboratory-generated PCR primers from the Cmm tomatinase gene. The specificity of this technique was determined with 15 plant-pathogenic and 4 common, saprophytic bacteria. With IFAS, crossreactions were found for Pantoea dispersa, P. agglomerans and Rahnella aquatilis, and with PTA-ELISA for Curtobacterium flaccumfaciens, Pectobacterium atrosepticum and Dickeya sp. Cross-reactions with subspecies other than michiganensis were also found using both methods. Molecular methods were optimized by verification of annealing temperatures and times for both primers. Conditions were finally adjusted to 30 s at 65 °C for Dreier’s and 10 s at 69 °C for our primer set. After this optimization, both primer pairs produced positive reaction only with Cmm. By means of PTA-ELISA and IFAS, Cmm strains were detected at a concentration up to 105 CFU/mL and 103 CFU/mL, respectively. The PCR test with bacterial cell suspensions reached a sensitivity of 103 CFU/mL with our designed primers and 104 CFU/mL with Dreier’s primer pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号