首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme   总被引:2,自引:0,他引:2  
The brains of Alzheimer's disease (AD) patients are morphologically characterized by neurofibrillar abnormalities and by parenchymal and cerebrovascular deposits of beta-amyloid peptides. The generation of beta-amyloid peptides by proteolytical processing of the amyloid precursor protein (APP) requires the enzymatic activity of the beta-site APP cleaving enzyme 1 (BACE1). The expression of this enzyme has been localized to the brain, in particular to neurons, indicating that neurons are the major source of beta-amyloid peptides in brain. Astrocytes, on the contrary, are known to be important for beta-amyloid clearance and degradation, for providing trophic support to neurons, and for forming a protective barrier between beta-amyloid deposits and neurons. However, under certain conditions related to chronic stress, the role of astrocytes may not be beneficial. Here we present evidence demonstrating that astrocytes are an alternative source of BACE1 and therefore may contribute to beta-amyloid plaque formation. While resting astroyctes in brain do not express BACE1 at detectable levels, cultured astrocytes display BACE1 promoter activity and express BACE1 mRNA and enzymatically active BACE1 protein. Additionally, in animal models of chronic gliosis and in brains of AD patients, there is BACE1 expression in reactive astrocytes. This would suggest that the mechanism for astrocyte activation plays a role in the development of AD and that therapeutic strategies that target astrocyte activation in brain may be beneficial for the treatment of AD. Also, there are differences in responses to chronic versus acute stress, suggesting that one consequence of chronic stress is an incremental shift to different phenotypic cellular states.  相似文献   

2.
3.
4.
R Siman  J P Card  R B Nelson  L G Davis 《Neuron》1989,3(3):275-285
Although the beta-amyloid peptide is an established core component of neuritic plaques that accumulate in Alzheimer's disease, the mechanisms responsible for its deposition are not well understood. We now report that lesions of rat hippocampal neurons cause a time-dependent, long-lasting elevation of immunoreactivity for the beta-amyloid precursor protein (APP) in neighboring astrocytes, a cell type not normally containing the protein. The increase represents astroglial expression of the protein rather than a scavenging of APP released by damaged neurons. Immunoelectron microscopy confirmed that APP-containing cells are reactive astroglia, both surrounding capillaries and within the neuropil. These results demonstrate that neuronal damage stimulates APP expression in adult brain and suggest that reactive astrocytes may be a source of the beta-amyloid that forms neuropathological plaques in Alzheimer's disease.  相似文献   

5.
In an effort to identify astrocyte-derived molecules that may be intimately associated with progression of Alzheimer's disease (AD), Lib, a type I transmembrane protein belonging to leucine-rich repeat superfamily, has been identified as a distinctly inducible gene, responsive to beta-amyloid as well as pro-inflammatory cytokines in astrocytes. To evaluate the roles of Lib in AD, we investigated Lib expression in AD brain. In non-AD brain, Lib mRNA has been detected in neurons but not in quiescent astrocytes. On the contrary, in AD brain, Lib mRNA is expressed in activated astrocytes associated with senile plaques, but not expressed in neurons around lesions. Lib-expressing glioma cells displayed promotion of migration ability through reconstituted extracellular matrix and recombinant Lib protein bound to constituents of extracellular matrix. These observations suggest that Lib may contribute to regulation of cell-matrix adhesion interactions with respect to astrocyte recruitment around senile plaques in AD brain.  相似文献   

6.
Beta-amyloid (Abeta) peptides that accumulate in Alzheimer disease are generated from the beta-amyloid precursor protein (betaAPP) by cleavages by beta-secretase BACE1 and by presenilin-dependent gamma-secretase activities. Very few data document a putative cross-talk between these proteases and the regulatory mechanisms underlying such interaction. We show that presenilin deficiency lowers BACE1 maturation and affects both BACE1 activity and promoter transactivation. The specific gamma-secretase inhibitor DFK167 triggers the decrease of BACE1 activity in wild-type but not in presenilin-deficient fibroblasts. This decrease is also elicited by catalytically inactive gamma-secretase. The overexpression of APP intracellular domain (AICD), the gamma/epsilon-secretase-derived C-terminal product of beta-amyloid precursor protein, does not modulate BACE1 activity or promoter transactivation in fibroblasts and does not alter BACE1 expression in AICD transgenic brains of mice. A DFK167-sensitive increase of BACE1 activity is observed in cells overexpressing APPepsilon (the N-terminal product of betaAPP generated by epsilon-secretase cleavage harboring the Abeta domain but lacking the AICD sequence), suggesting that the production of Abeta could account for the modulation of BACE1. Accordingly, we show that HEK293 cells overexpressing wild-type betaAPP exhibit a DFK167-sensitive increase in BACE1 promoter transactivation that is increased by the Abeta-potentiating Swedish mutation. This effect was mimicked by exogenous application of Abeta42 but not Abeta40 or by transient transfection of cDNA encoding Abeta42 sequence. The IkappaB kinase inhibitor BMS345541 prevents Abeta-induced BACE1 promoter transactivation suggesting that NFkappaB could mediate this Abeta-associated phenotype. Accordingly, the overexpression of wild-type or Swedish mutated betaAPP does not modify the transactivation of BACE1 promoter constructs lacking NFkappaB-responsive element. Furthermore, APP/beta-amyloid precursor protein-like protein deficiency does not affect BACE1 activity and expression. Overall, these data suggest that physiological levels of endogenous Abeta are not sufficient per se to modulate BACE1 promoter transactivation but that exacerbated Abeta production linked to wild-type or Swedish mutated betaAPP overexpression modulates BACE1 promoter transactivation and activity via an NFkappaB-dependent pathway.  相似文献   

7.
The incidence of Alzheimer disease (AD) and vascular dementia is greatly increased following cerebral ischemia and stroke in which hypoxic conditions occur in affected brain areas. beta-Amyloid peptide (Abeta), which is derived from the beta-amyloid precursor protein (APP) by sequential proteolytic cleavages from beta-secretase (BACE1) and presenilin-1 (PS1)/gamma-secretase, is widely believed to trigger a cascade of pathological events culminating in AD and vascular dementia. However, a direct molecular link between hypoxic insults and APP processing has yet to be established. Here, we demonstrate that acute hypoxia increases the expression and the enzymatic activity of BACE1 by up-regulating the level of BACE1 mRNA, resulting in increases in the APP C-terminal fragment-beta (betaCTF) and Abeta. Hypoxia has no effect on the level of PS1, APP, and tumor necrosis factor-alpha-converting enzyme (TACE, an enzyme known to cleave APP at the alpha-secretase cleavage site). Sequence analysis, mutagenesis, and gel shift studies revealed binding of HIF-1 to the BACE1 promoter. Overexpression of HIF-1alpha increases BACE1 mRNA and protein level, whereas down-regulation of HIF-1alpha reduced the level of BACE1. Hypoxic treatment fails to further potentiate the stimulatory effect of HIF-1alpha overexpression on BACE1 expression, suggesting that hypoxic induction of BACE1 expression is primarily mediated by HIF-1alpha. Finally, we observed significant reduction in BACE1 protein levels in the hippocampus and the cortex of HIF-1alpha conditional knock-out mice. Our results demonstrate an important role for hypoxia/HIF-1alpha in modulating the amyloidogenic processing of APP and provide a molecular mechanism for increased incidence of AD following cerebral ischemic and stroke injuries.  相似文献   

8.
9.
Beta-amyloid peptides play a major role in the pathogenesis of Alzheimer's disease (AD). Therefore, preventing beta-amyloid formation by inhibition of the beta site amyloid precursor protein-cleaving enzyme (BACE) 1 is considered as a potential strategy to treat AD. Cholinergic mechanisms have been shown to control amyloid precursor protein processing and the number of muscarinic M2-acetylcholine receptors is decreased in brain regions of patients with AD enriched with senile plaques. Therefore, the present study investigates the effect of this M2 muscarinic receptor down-regulation by siRNA on total gene expression and on regulation of BACE1 in particular in SK-SH-SY5Y cells. This model system was used for microarray analysis after carbachol stimulation of siRNA-treated cells compared with carbachol stimulated, non-siRNA-treated cells. The same model system was used to elucidate changes at the protein level by using two-dimensional gels followed by Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF) analysis. Taken together, the results indicate that the M2 acetylcholine receptor down-regulation in brains of patients with AD has important effects on the expression of several genes and proteins with major functions in the pathology of AD. This includes beta-secretase BACE1 as well as several modulators of the tau protein and other AD-relevant genes and proteins. Moreover, most of these genes and proteins are adversely affected against the background of AD.  相似文献   

10.
Hozumi  I.  Inuzuka  T.  Tsuji  S. 《Neurochemical research》1998,23(3):319-328
Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.  相似文献   

11.
12.
Yeon SW  Jeon YJ  Hwang EM  Kim TY 《Peptides》2007,28(4):838-844
One of the hallmarks of Alzheimer's disease (AD) is the deposition of beta-amyloid (Abeta) peptides in neuritic plaques. Abeta peptides are derived from sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. beta-APP cleaving enzyme-1 (BACE1) has been shown to be the major beta-secretase and is a primary therapeutic target for AD. We report here novel BACE1 inhibitory peptidomimetics, which are derived from catalytic domains of BACE1 themselves, instead of APP cleavage sites and are structurally modified by myristoylation in N-terminus for efficient cell permeability. The peptides not only inhibited the formation of APPbeta (a soluble N-terminal fragment of APP cleaved by beta-secretase), but also significantly reduced Abeta40 production. Our results suggest a new approach for identifying inhibitory agents for the treatment of AD.  相似文献   

13.
He W  Lu Y  Qahwash I  Hu XY  Chang A  Yan R 《Nature medicine》2004,10(9):959-965
Inhibiting the activity of the beta-amyloid converting enzyme 1 (BACE1) or reducing levels of BACE1 in vivo decreases the production of amyloid-beta. The reticulon family of proteins has four members, RTN1, RTN2, RTN3 and RTN4 (also known as Nogo), the last of which is well known for its role in inhibiting neuritic outgrowth after injury. Here we show that reticulon family members are binding partners of BACE1. In brain, BACE1 mainly colocalizes with RTN3 in neurons, whereas RTN4 is more enriched in oligodendrocytes. An increase in the expression of any reticulon protein substantially reduces the production of Abeta. Conversely, lowering the expression of RTN3 by RNA interference increases the secretion of Abeta, suggesting that reticulon proteins are negative modulators of BACE1 in cells. Our data support a mechanism by which reticulon proteins block access of BACE1 to amyloid precursor protein and reduce the cleavage of this protein. Thus, changes in the expression of reticulon proteins in the human brain are likely to affect cellular amyloid-beta and the formation of amyloid plaques.  相似文献   

14.
15.
MicroRNAs (miRNAs) are key regulatory RNAs known to repress mRNA translation through recognition of specific binding sites located mainly in their 3'-untranslated region (UTR). Loss of specific miRNA control of gene expression is thus expected to underlie serious genetic diseases. Intriguingly, previous post-mortem analyses showed higher beta-amyloid precursor protein-converting enzyme (BACE) protein, but not mRNA, levels in the brain of patients that suffered from Alzheimer disease (AD). Here we also observed a loss of correlation between BACE1 mRNA and protein levels in the hippocampus of a mouse model of AD. Consistent with an impairment of miRNA-mediated regulation of BACE1 expression, these findings prompted us to investigate the regulatory role of the BACE1 3'-UTR element and the possible involvement of specific miRNAs in cultured neuronal (N2a) and fibroblastic (NIH 3T3) cells. Through various experimental approaches, we validated computational predictions and demonstrated that miR-298 and miR-328 recognize specific binding sites in the 3'-UTR of BACE1 mRNA and exert regulatory effects on BACE1 protein expression in cultured neuronal cells. Our results may provide the molecular basis underlying BACE1 deregulation in AD and offer new perspectives on the etiology of this neurological disorder.  相似文献   

16.
The protease BACE1 (β-site APP-cleaving enzyme 1) is essential for the generation of amyloid beta (Aβ) from amyloid precursor protein (APP). Although BACE1 is expressed primarily in neurons, which are a principal source of Aβ in the brain, the mechanism that underlies basal expression of BACE1 in neurons has not been studied thoroughly. In the present study, we found that endogenous BACE1 expression was mediated by constitutive JAK2/STAT1 activation in neurons. Inhibition of the JAK2/STAT1 signaling pathway, using AG490 (a JAK2 inhibitor), a dominant-negative form of STAT1, and SOCS1 and SOCS3 overexpression, reduced levels of BACE1 promoter activity, expression of endogenous BACE1, and generation of Aβ. These results were recapitulated in the SH-SY5Y neuronal cell line, primary cultured neurons, and mouse brains. Therefore, we propose that constitutive JAK2/STAT1 activation mediates endogenous BACE1 expression in neurons and that inhibition of JAK2/STAT1 signaling abrogates basal levels of BACE1 expression and Aβ generation.  相似文献   

17.
18.
BACE1 (β‐secretase) plays a central role in the β‐amyloidogenesis of Alzheimer’s disease (AD). The ubiquitin–proteasome system, a major intracellular protein quality control system, has been implicated recently in BACE1 metabolism. We report that the SCFFbx2‐E3 ligase is involved in the binding and ubiquitination of BACE1 via its Trp 280 residue of F‐box‐associated domain. Physiologically, we found that Fbx2 was expressed in various intracellular organelles in brain neurons and that BACE1 is colocalized with Fbx2 and the amyloid precursor protein (APP), mainly at the early endosome and endoplasmic reticulum. The former are believed to be the major intracellular compartments where the APP is cleaved by BACE1 and β‐amyloid is produced. Importantly, we found that overexpression of Fbx2 in the primary cortical and hippocampal neurons derived from Tg2576 transgenic mice significantly promoted BACE1 degradation and reduced β‐amyloid production. In the search for specific endogenous modulators of Fbx2 expression, we found that PPARγ coactivator‐1α (PGC‐1α) was capable of promoting the degradation of BACE1 through a mechanism involving Fbx2 gene expression. Interestingly, we found that the expression of both Fbx2 and PGC‐1α was significantly decreased in the brains of aging Tg2576 mice. Our in vivo studies using a mouse model of AD revealed that exogenous adenoviral Fbx2 expression in the brain significantly decreased BACE1 protein levels and activity, coincidentally reducing β‐amyloid levels and rescuing synaptic deficits. Our study is the first to suggest that promoting Fbx2 in the brain may represent a novel strategy for the treatment of AD.  相似文献   

19.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号