首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
Aims Our objectives were to study the spatial distribution of soil organic carbon (SOC) density and its influencing factors in the main forest ecosystems in Guangxi. Methods A total of 345 sample plots were established in Guangxi, and the size of each plot was 50 m × 20 m. Based on the forest resource inventory data and field investigation, the SOC storage of the main forests in Guangxi was estimated. Geostatistics was applied to analyze the spatial pattern of SOC density and the main influencing factors on SOC density were also explored by principal component analysis and stepwise regression. Important findings The total SOC storage in the main forests in Guangxi was 1 686.88 Tg, and the mean SOC density was 124.70 Mg•hm2, which is lower than that of China. The best fitted semivariogram model of SOC density was exponential model, and the spatial autocorrelation was medium. The contour map based on Kriging indicated that northeastern Guangxi had high SOC density and northwestern Guangxi had low SOC density, which corresponded to high SOC density in non-karst region and low SOC density in karst region. The SOC density followed the sequence of bamboo forest > deciduous broadleaf forest > warm coniferous forest > mixed evergreen and deciduous broadleaf forest > evergreen broadleaf forest, and yellow soil > red soil >lateritic red soil > limestone soil. The dominant environment factors affecting SOC density included soil depth, longitude, latitude, and altitude. Soil depth was the most influential factor, which was mainly attributed to the karst landscape.  相似文献   

2.
Our knowledge about soil organic matter (SOM) dynamics is limited although this is an important issue in the study of responses of ecosystems to global climate changes. Twelve sampling plots were set up every 200 m from 1 700 to 3 900 m along the vertical vegetation gradient along the east slope of Gongga Mountain. Samples were taken from all 12 plots for SOM content measurement, although only 5 of the 12 plots were subjected to radiocarbon measurements. A radiocarbon isotope method and a time-dependent model were used to quantify the SOM dynamics and SOM turnover rates along the vertical vegetation gradient. The results showed that the SOM turnover rate decreased and turnover time increased with soil depth for all vegetation types. The litter layer turnover rates presented a clear trend along the gradient. The litter layer turnover rates decreased with an increase in elevation, except that the litter layer turnover rate of mixed forest was higher than that of evergreen forest. Climatic factors, such as temperature and precipitation, were the main factors influencing the surface soil carbon dynamics. The turnover rates of the subsoil (including the A, B, and C horizons in the soil profiles) along the vertical gradient had no clear trends. The SOM of subalpine shrub and meadow turned over more slowly than that of the forest types in almost all soil horizons. The characteristic of short roots distributing in the upper part of the soil profile leads to different SOM dynamics of shrub and meadow compared with the forest types. Coniferous and mixed forests were susceptible to carbon loss from the young carbon pool, but their long and big roots resulted in high △^14C values of the deep soil profiles and increased the input of young carbon to the deep soil. In evergreen forest, the carbon cumulative ability from the B horizon to the C horizon was weak. The different vegetation types, together with their different modes of nutrient and carbon intake, may be the mechanism conditioning the subsoil organic matter dynamics.  相似文献   

3.
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.  相似文献   

4.
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.  相似文献   

5.
Aims This study aims to evaluate the impacts of future climate change on vegetation and soil carbon accumulation rate in China's forests. Methods The vegetation and soil carbon storage were predicted by the atmosphere-vegetation interaction model (AVIM2) based on B2 climate change scenario during the period of 1981 2040. This study focused on mature forests in China and the forested area maintained constant over the study period. The carbon accumulation rate in year t is defined as the carbon storage of year t minus that of year t 1. Important findings Under B2 climate change scenario, mean air temperature in China's forested area was projected to rise from 7.8 °C in 1981 to 9.0 °C in 2040. The total vegetation carbon storage was then estimated to increase from 8.56 Pg C in 1981 to 9.79 Pg C in 2040, meanwhile total vegetation carbon accumulation rate was estimated to fluctuate between 0.054 0.076 Pg C•a1, with the average of 0.022 Pg C•a1. The total soil carbon storage was estimated to increase from 30.2 Pg C in 1981 to 30.72 Pg C in 2040, and total soil carbon accumulation rate was estimated to vary in the range of 0.035 0.072 Pg C•a1, with the mean of 0.010 Pg C•a1. The response of vegetation and soil carbon accumulation rate to climate change had significant spatial difference in China although the two time series did not show significant trend over the study period. Our results also showed warming was not in favor of forest carbon accumulation, so in the northeastern and southeastern forested area, especially in the Changbai Mountain, with highest temperature increase in the future, the vegetation and soil carbon accumulation rate were estimated to decrease greatly. However, in the southern of southwestern forested area and other forested area, with relatively less temperature increase, the vegetation and soil carbon accumulation rate was estimated to increase in the future.  相似文献   

6.
Land use change and land-cover impacts ecosystem services and functions. In this paper according to the study area’s land use characteristic and ecosystem type, the Land use category of the study area was divided into seven categories, including Forest, Grassland, Farmland, Water, Wetlands, Urban land and Barren land. The dynamic information of the forest Land use change during 10 years was calculated by the map algebra in ArcGIS 9.2. Both in 1992 and in 2002, Forest and Grassland were two largest Land use category in the study area. Forest took up 44.7% and 39.4% of the total area, and Grassland was 50.13% and 50.72% of the total area in 1992 and 2002. Finally, we valued change in ecosystem services delivered by each land use category using coefficients published by Costanza et al. [5]. Ecosystem services value of study area, the total ecosystem services value of 10.6 million hectares of this study area decreased by 11.74%. From the coefficient of sensitivity (CS) was less than unity in all case, it indicated that the total ecosystem services values was relatively inelastic and the results suggest that we have to pay attention more on land use change and finally, policy for driving forces of land use change were developed.  相似文献   

7.
Land use change and land-cover impacts ecosystem services and functions. In this paper according to the study area’s land use characteristic and ecosystem type, the Land use category of the study area was divided into seven categories, including Forest, Grassland, Farmland, Water, Wetlands, Urban land and Barren land. The dynamic information of the forest Land use change during 10 years was calculated by the map algebra in ArcGIS 9.2. Both in 1992 and in 2002, Forest and Grassland were two largest Land use category in the study area. Forest took up 44.7% and 39.4% of the total area, and Grassland was 50.13% and 50.72% of the total area in 1992 and 2002. Finally, we valued change in ecosystem services delivered by each land use category using coefficients published by Costanza et al. [5]. Ecosystem services value of study area, the total ecosystem services value of 10.6 million hectares of this study area decreased by 11.74%. From the coefficient of sensitivity (CS) was less than unity in all case, it indicated that the total ecosystem services values was relatively inelastic and the results suggest that we have to pay attention more on land use change and finally, policy for driving forces of land use change were developed.  相似文献   

8.
Plant water sources were estimated by two or three compartment linear mixing models using hydrogen and oxygen isotope (δD and δ^18O) values of different components such as plant xylem water, precipitation and river water as well as soil water on the Tibetan Plateau in the summer of 2005. Four dominant species (Quercus aquifolioides, Pinus tabulaeformis, Salix rehderiana and Nitraria tangutorum) in three typical ecosystems (forest, shrub and desert) were investigated in this study. Stable isotope ratios of the summer precipitations and the soil water presented variations in spatial and temporal scales. δ^18O values of N. tangutorum xylem water were constant in the whole growth season and very similar to those of deep soil water. Water sources for all of the plants came from both precipitations and soil water. Plants switched rapidly among different water sources when environmental water conditions changed. Rainwater had different contributions to the plants, which was influenced by amounts of precipitation. The percentage of plant xylem water derived from rainwater rose with an increase in precipitation. Water sources for broad-leaved and coniferous species were different although they grew in the same environmental conditions. For example, the broad-leaved species Q. aquifolioides used mainly the water from deep soil, while 92.5% of xylem water of the coniferous species P. tabulaeformis was derived from rainwater during the growth season. The study will be helpful for us to fully understand responses of species on the Tibetan Plateau to changes in precipitation patterns, and to assess accurately changes of vegetation distribution in the future.  相似文献   

9.
Zhang Q M  Zhang C  Liu M S  Yu W  Xu C  Wang H J 《农业工程》2007,27(4):1265-1271
The objectives of this study were to examine the effects of arboraceous layer on the spatial pattern and morphological characteristics of herbaceous layer in Elaeagnus angustifolia–Achnatherum splendens community in Ningxia Hui Autonomous Region, China. The analyses of community composition and structural characteristics as well as the investigation of soil moisture and salinity showed that different life forms of plants differ in the soil depth at which they absorb and utilize soil moisture. Wavelet analysis showed that there were differences between the spatial patterns of A. splendens in the canopy-projected regions and other regions, and the intrinsic scales were detected. The results from the buffer analysis showed that the control of arboraceous layer on the herbaceous layer on the spatial patterns and the morphological characteristics were influenced not only by canopy shading but also by other causes such as distribution patterns of roots as the morphological characteristics did not monotonically change with distance.  相似文献   

10.
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.  相似文献   

11.
喀斯特峰丛洼地生态系统服务空间权衡度及其分异特征   总被引:4,自引:0,他引:4  
高江波  左丽媛  王欢 《生态学报》2019,39(21):7829-7839
我国西南喀斯特峰丛洼地区脆弱的生态环境与剧烈的人类活动导致石漠化现象以及生态功能退化,制约了区域生态-福祉耦合效益的提升。首先从数值变化与空间变异综合的角度,构建了融合均方根偏差法与地理探测器的生态系统服务空间权衡度指标,进而围绕喀斯特水源涵养-土壤侵蚀关系以及植被固碳-土壤侵蚀关系,在不同环境因子梯度下和地貌形态类型区内开展生态系统服务空间权衡度计算及其分异特征研究。环境因子梯度分析表明,由于植被显著的保持水土能力,水源涵养与土壤侵蚀之间的空间权衡度随植被覆盖度的增大而逐渐减小;地形因子对地表水土过程与植被功能影响深刻,植被固碳和土壤侵蚀之间的空间权衡度随海拔和坡度的升高而逐渐增大,1000 m以上中海拔以及陡坡地区的空间权衡度是低海拔与缓坡地区的4-6倍。地貌形态类型区的统计结果显示,地貌特征对生态系统服务之间的空间权衡关系具有宏观控制作用,植被固碳-土壤侵蚀之间的空间权衡度随地形起伏度的升高而逐渐增大,具体为:中海拔平原 < 中海拔台地 < 中海拔丘陵 < 小起伏中山 < 中起伏中山,水源涵养与土壤侵蚀之间则成相反趋势。因此,今后在以生态系统服务协同提升为目标的喀斯特石漠化治理工作中,应强调环境因子作用程度的空间差异以及地貌形态特征的宏观控制作用。  相似文献   

12.
喀斯特生态系统服务功能遥感定量评估与分析   总被引:13,自引:0,他引:13  
生态系统服务功能评估是人类对自然与生态系统认识成果应用于经济决策的桥梁.西南喀斯特区面临环境恶化和经济社会贫困的双重压力,揭示其生态系统服务功能时空变化特征是实现生态恢复和可持续发展过程中亟待解决的问题.本研究通过多年遥感影像及气象和统计资料等,对喀斯特典型区域桂西北1985~1990~2000~2005年的生态系统服务功能进行了定量评估与分析.其分析结果表明:(1) 生态服务功能呈先降后升、总体减少趋势,4个年份分别是1096.52亿元、887.89亿元、1033.84亿元和1062.57亿元.大致呈由西向东、由山区向峰丛洼地减少的空间分布特征.高值区(西部)是减弱区,低值区(东部)是增强区;(2) 营养物循环、调节气体和有机质生产等单项生态服务功能较高,总和分别占各自年份72.69%、64.57%、70.18%和72.10%;涵养水源、土壤保持和娱乐文化相对较低,都远低于100亿元. (3) 林地和灌木是优势景观类型,也是生态服务功能的主要贡献景观类型,二者总贡献率在各自年份分别为71.22%、70.10%、73.66%、67.03%;居民用地和石漠化地生态服务功能少,总贡献率分别仅为0.90%、0.63%、0.77%、1.14%;(4) 各行政区单位面积的生态服务功能变化幅度比较大,分别由23549.70元/hm2、173.5.10元/hm2、22705.1元/hm2、19062.3元/hm2低至9764.71元/hm2、7689.61元/hm2、9537.01元/hm2、7540 79元/hm2.典型喀斯特区单位面积生态服务功能显著增加,非喀斯特区单位面积生态服务功能明显减少.研究表明,喀斯特区域生态环境移民和退耕还林等石漠化控制措施效果显著,有利于生态系统服务的充分发挥.  相似文献   

13.
喀斯特脆弱生态系统复合退化控制与重建模式   总被引:25,自引:3,他引:22  
以西南喀斯特地区为例,通过总结前人的研究成就和采集中国科学院亚热带农业生态研究所喀斯特生态实验站部分收集整理和试验数据,系统分析了喀斯特脆弱生态系统及其退化的机理,从"人-自然-经济复合生态系统"的观点出发,以干扰程度、群落类型、服务功能、土地退化和贫困状况为指标,创新性地提出了喀斯特脆弱生态系统的复合退化模式(含4个阶段),运用现代生态恢复学原理、方法和现代管理学创新理论,建立了喀斯特脆弱生态系统复合退化的控制模型.以此为基础,在喀斯特石山区、半石山区和土山丘陵区3个区域环境尺度范围内,针对性地建立了生态保护型、外向经济型和双三重螺旋3种生态恢复与重建模式,以促进喀斯特区域生态、经济、社会的全面协调与可持续发展.  相似文献   

14.
贵州喀斯特石漠化地区植物多样性与土壤理化性质   总被引:26,自引:0,他引:26  
以贵州典型喀斯特石漠化生态系统环境为研究对象,运用野外取样调查和实验室检测分析方法,研究不同等级石漠化环境植物多样性和土壤理化性质特征及其相关性;运用空间替代时间方法,探讨石漠化演替过程中植物多样性和土壤理化性质的响应,旨在为贵州乃至整个中国西南喀斯特森林生态保护和石漠化生态系统恢复重建提供理论支撑。结果表明:1)石漠化环境植物群路组成简单,物种丰富度也很低,且随着石漠化程度增加,植被物种组成呈递减趋势;不同等级石漠化环境植物多样性具有显著差异,均匀度指数变化与石漠化等级演替明显耦合,显示了随石漠化程度增加而减小的变化趋势。2)不同等级石漠化环境土壤理化性质存在显著差异,随着石漠化程度增加,土壤理化性质显示了先退化后改善的响应过程。土壤有机质、氮素、毛管持水量、容重和孔隙度与植物多样性具有明显的相关性,在改善土壤理化性质和促进植物多样性恢复方面起着关键作用。3)主成分分析表明,土壤有机质、氮素、钾素、持水状况、孔隙度和植物多样性均匀度指数等是基于土壤理化性质和植物多样性评价石漠化程度的关键指标。基于上述结果,进一步阐述了石漠化演替过程中植物多样性和土壤理化性质的变化规律和响应机制。研究结果对我国西南喀斯特森林生态保护和石漠化生态系统恢复重建具有一定的理论意义和实践指导价值。  相似文献   

15.
中国南方喀斯特石漠化演替过程中土壤理化性质的响应   总被引:19,自引:0,他引:19  
盛茂银  刘洋  熊康宁 《生态学报》2013,33(19):6303-6313
以中国西南典型喀斯特石漠化生态系统土壤为研究对象,运用野外定点取样和实验室分析检测方法,研究不同等级石漠化环境土壤理化性质特征;运用空间代替时间方法,探讨石漠化演替过程中土壤理化性质的响应及其机制,旨在为中国西南喀斯特森林生态保护和石漠化生态系统恢复重建提供理论支撑。结果表明:1)不同等级石漠化环境土壤理化性质存在显著差异,土壤容重、毛管孔隙度、总孔隙度、田间含水量、毛管含水量、pH值、有机质、水解氮、有效磷和全钾均在不同等级石漠化环境间具有显著差异。但这些指标并不是随着石漠化程度增加而一直退化,而是一个先退化后改善的趋势;2)土壤有机质、氮素、毛管持水量、容重和孔隙度与土壤其它绝大多数理化因子具有明显的相关性,是土壤理化性质的关键因子,在改善土壤理化性质和促进养分循环方面起着关键作用;3)主成分分析也表明,土壤有机质、氮素、钾素、容重、持水状况、孔隙度等是基于土壤理化性质评价石漠化程度的关键指标。作者提出了强度石漠化环境裸岩对土壤养分的聚集效应学说和喀斯特石漠化演替过程中土壤理化性质的响应及其机制。研究结果对中国西南喀斯特森林生态保护和石漠化生态系统恢复重建具有重要的理论意义和实践指导价值。  相似文献   

16.
基于元胞自动机的喀斯特石漠化格局模拟研究   总被引:3,自引:0,他引:3  
西南喀斯特山区的石漠化问题是目前我国西部地区最为突出的地域环境问题之一,其迅速发展已经严重影响到当地人们的生产生活。以导致石漠化发生发展的自然、人文因子为切入点,通过模拟影响喀斯特系统地表覆被变化的基本生态过程(如植物定居、植物死亡、水蚀风蚀引起的土地退化以及岩石成土过程等),利用随机元胞自动机具有的简单邻域规则产生复杂空间格局的特点,使喀斯特系统地表覆被植被-裸土-裸岩状态在一定概率下发生状态转换,并结合RS和GIS技术,构建了简单、有效的喀斯特石漠化模拟及预测模型(KarstCA)。以典型喀斯特石漠化地区关岭县为研究区,在自然、人文驱动因素共同影响以及只考虑自然驱动因素情景下,KarstCA模型模拟的研究区2007年石漠化空间分布格局的差异主要分布在中部和南部,其主要是不同空间范围上人类活动作用方式和强度差异所致。在16a中(1992—2007年)喀斯特地区地物(植被-裸土-裸岩)丰度变化成非线性关系,当植被覆达到54%以上并继续增加时,裸岩发展趋势与之呈明显的负相关(P<0.01)。在模拟期内人类活动对研究区石漠化的发展起到抑制作用,人类活动的正效应(植树造林等)与负效应(乱砍滥伐、过度放牧等)在一定程度上抵消了植被总面积的剧烈变化趋势。将地表过程耦合进元胞自动机模型,突破了以往该类研究只通过概率考虑状态转换,而对其机理认识的不足;同时本研究考虑了自然、人文驱动因素在不同空间尺度上作用于石漠化现象的复杂性,对于探索这些因素是如何作用于地表过程及其贡献率等研究具有一定的参考价值。  相似文献   

17.
极端气候胁迫下西南喀斯特山区生态系统脆弱性遥感评价   总被引:7,自引:3,他引:4  
郭兵  姜琳  罗巍  杨光  戈大专 《生态学报》2017,37(21):7219-7231
全球气候变暖导致极端天气事件频发,针对西南喀斯特山区的特殊地理国情(水土流失和石漠化严重),引入了大尺度景观格局指数(香农均匀性指数和蔓延度指数)和极端气候指数(极端高温日数、极端低温日数和极端降雨日数),构建了生态系统脆弱性遥感评价体系,进而分析和探讨了该地区近13年的生态系统脆弱性时空变化格局和驱动机制,研究结果表明:西南喀斯特山区的生态系统则属于轻-中度脆弱,其分布格局表现为以川滇黔为核心向周边减小的趋势。2000—2013年,西南喀斯特山区的生态系统脆弱性表现为先增加后减小的趋势。近13年西南喀斯特山区的生态系统脆弱性时空变化格局受人类活动(不同产业GDP和人口密度)、降水、地形地貌、水土流失、石漠化等因素影响较为显著。本研究可以为西南喀斯特山区的生态系统保护及生态环境的恢复与治理提供决策依据和技术支持。  相似文献   

18.
喀斯特峰丛洼地石漠化治理与生态服务提升技术研究   总被引:9,自引:0,他引:9  
针对峰丛洼地区域石漠化面积削减较为迅速、亟需从前期治理侧重遏制面积扩张转向生态服务提升为主的新阶段后面临的治理投入与分区较为粗放、治理技术与模式缺乏针对性、综合效益亟待提升等问题,以生态服务提升为核心目标,系统研究生态工程实施以来区域石漠化演变的关键因子、水土流失/漏失关键过程与调控、植被恢复与人工诱导提升土壤生态功能机理,突破面向生态功能优化的区域生态系统监测评估、表层岩溶水生态调蓄与高效利用、有机物资源利用与退化土壤肥力提升、耐旱型植物群落构建与规模化建植、可持续性生态衍生产业培育等关键技术,形成生态服务提升与民生改善的区域石漠化治理系统性解决方案,为石漠化治理二期工程与扶贫提供科技支撑与示范样板。  相似文献   

19.
生物土壤结皮在喀斯特生态治理中的应用潜力   总被引:1,自引:0,他引:1  
喀斯特地区生境条件复杂,生态系统脆弱,其中石漠化成为制约喀斯特地区发展的重要因素。该文综述了生态系统中生物土壤结皮的可抗逆性特征及其对加速母岩成土速率、提高地表抗侵蚀力、改善土壤环境状态,调控降水下渗、改变土壤中水分再分配格局、促进土壤微生物和植被演替以及提高生物多样性的关键作用。探讨了生物土壤结皮与喀斯特生态系统的反馈机制及人工培育结皮植被对石漠化防治的应用潜力。此外,生物土壤结皮与生态系统间的互作机制是研究喀斯特生态治理的关键,两者间的耦合关系是一个动态过程,需要长期的不间断多维度监测。建议加强对生物土壤结皮与喀斯特生境间耦合机制及其在喀斯特岩溶过程的互作机制,喀斯特地区生物土壤结皮耐胁迫特性以及在喀斯特生境下人工培植技术与机理等方面的研究。  相似文献   

20.
我国西南喀斯特地区是具有土层薄和土被不连续等特征的生态脆弱区,人为过度干扰和土地不当利用导致了生境退化甚至石漠化的发生。从“九五”规划到“十三五”规划,为了有效抑制并逆转石漠化趋势,生态修复措施得到普遍的推广应用。“十四五”规划进一步提出科学推进石漠化综合治理,提高生态系统自我修复能力和稳定性。从土壤微生物、原生动物、线虫、微节肢动物、蚯蚓和线蚓等方面,综述了喀斯特地区生态修复对土壤生物多样性的影响。研究发现:(1)喀斯特生境细菌和真菌的多样性高于非喀斯特生境,原因是喀斯特具有较高的土壤pH和钙含量;(2)与非喀斯特生境相比,喀斯特生境土壤动物类群数相差不大而个体密度较低;(3)石漠化过程伴随着植被退化,降低了土壤微生物种类和功能多样性,土壤动物的个体密度和类群数也呈现降低趋势;(4)生态修复促进植被正向演替,土壤微生物量和酶类活性逐渐上升,真菌/细菌生物量比值增大,土壤动物个体密度和类群数增加,有利于土壤固碳和生态修复。因此,土壤生物多样性是适合指示喀斯特石漠化的生态修复的生物学指标。研究建议:(1)在传统分类鉴定基础上,结合宏基因组学、宏蛋白质组学和同位素标记等技术,完善生态修复的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号