首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current knowledge of genotypic and phenotypic diversity in the species Escherichia coli is based almost entirely on strains recovered from humans or zoo animals. In this study, we analyzed a collection of 202 strains obtained from 81 mammalian species representing 39 families and 14 orders in Australia and the Americas, as well as several reference strains; we also included a strain from a reptile and 10 from different families of birds collected in Mexico. The strains were characterized genotypically by multilocus enzyme electrophoresis (MLEE) and phenotypically by patterns of sugar utilization, antibiotic resistance, and plasmid profile. MLEE analysis yielded an estimated genetic diversity (H) of 0.682 for 11 loci. The observed genetic diversity in this sample is the greatest yet reported for E. coli. However, this genetic diversity is not randomly distributed; geographic effects and host taxonomic group accounted for most of the genetic differentiation. The genetic relationship among the strains showed that they are more associated by origin and host order than is expected by chance. In a dendrogram, the ancestral cluster includes primarily strains from Australia and ECOR strains from groups B and C. The most differentiated E. coli in our analysis are strains from Mexican carnivores and strains from humans, including those in the ECOR group A. The kinds and numbers of sugars utilized by the strains varied by host taxonomic group and country of origin. Strains isolated from bats were found to exploit the greatest range of sugars, while those from primates utilized the fewest. Toxins are more frequent in strains from rodents from both continents than in any other taxonomic group. Strains from Mexican wild mammals were, on average, as resistant to antibiotics as strains from humans in cities. On average, the Australian strains presented a lower antibiotic resistance than the Mexican strains. However, strains recovered from hosts in cities carried significantly more plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure.  相似文献   

2.
Escherichia coli , a normal inhabitant of the intestinal tract of mammals and birds, is a diverse species. Most studies on E. coli populations involve organisms from humans or human-associated animals. In this study, we undertook a survey of E. coli from native Australian mammals, predominantly Rattus tunneyi , living in a relatively pristine environment in the Bundjalung National Park. The genetic diversity was assessed and compared by multilocus enzyme electrophoresis (MLEE), sequence analysis of the mdh (malate dehydrogenase) gene and biotyping using seven sugars. Ninety-nine electrophoretic types were identified from the 242 isolates analysed by MLEE and 15 sequences from the mdh genes sequenced from 21 representative strains. The Bundjalung isolates extend the diversity represented by the E. coli reference (ECOR) set , with new MLEE alleles found in six out of 10 loci. Many of the Bundjalung isolates fell into a discrete group in MLEE. Other Bundjalung strains fell into the recognized E. coli ECOR set groups, but tended to be at the base of both the MLEE and mdh gene trees, implying that these strains are derived independently from ancestral forms of the ECOR groups and that ECOR strains represent only a subset of E. coli adapted to humans and human-associated animals. Linkage disequilibrium analysis showed that the Bundjalung population has an 'epidemic' population structure. The Bundjalung isolates were able to utilize more sugars than the ECOR strains, suggesting that diet plays a prominent role in adaptation of E. coli .  相似文献   

3.
4.
The Escherichia coli (E. coli) reference collection, ECOR, consists of 72 strains that are representative of the genotypic diversity, as indexed by multilocus enzyme electrophoresis (MLEE), in the species as a whole. MLEE revealed 4 main phylogenetic groups designated A, B1, B2 and D. We present a study of the relationship between the ECOR strains as determined by polymorphisms in seven variable-number of tandem repeats (VNTR) loci. Seven tandem repeats that were present in more than one of the fully sequenced E. coli strains were selected, and primers were constructed in order to amplify the targets in all species where the loci were present. The combined result for all VNTR loci was adapted as a multiple-locus variable-number tandem repeats analysis (MLVA) and showed that the ECOR collection was divided into 63 distinct genotypes. The ECOR phylogenetic groups defined by MLEE were not well conserved by MLVA. A set of 61 pathogenic isolates of both E. coli and Shigella spp. was then tested with the same set of VNTR loci, and revealed 54 distinct genotypes. In addition, the MLVA method was used to genotype isolates from patients and suspected sources in a recent outbreak of E. coli O103 in Norway. The pathogenic E. coli isolates contained the diarrhea causing categories EIEC, EAEC, STEC, ETEC and EPEC. Shigella isolates were of species S. flexneri, S. boydii, S. sonnei and S. dysenteriae. The MLVA method rapidly genotyped all isolates in the study at a Simpson's index of diversity of D=0.98.  相似文献   

5.
Escherichia coli is an important member of the gastrointestinal tract of humans and warm-blooded animals (primary habitat). In the external environment outside the host (secondary habitat), it is often considered to be only a transient member of the microbiota found in water and soil, although recent evidence suggests that some strains can persist in temperate soils and freshwater beaches. Here we quantified the population genetic structure of E. coli from a longitudinal collection of environmental strains isolated from six freshwater beaches along Lake Huron and the St. Clair River in Michigan. Multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) revealed extensive genetic diversity among 185 E. coli isolates with an average of 40 alleles per locus. Despite evidence for extensive recombination generating new alleles and genotypic diversity, several genotypes marked by distinct MLEE and MLST profiles were repeatedly recovered from separate sites at different times. A PCR-based phylogrouping technique showed that the persistent, naturalized E. coli belonged to the B1 group. These results support the hypothesis that persistent genotypes have an adaptive advantage in the secondary habitat outside the host.  相似文献   

6.
We studied the ancestry of virulence-associated genes in Escherichia coli by examining chromosomal regions specific to pathogenic isolates. The four virulence determinants examined were the alpha-hemolysin (hly) loci hlyI and hlyII, the type II capsule gene cluster kps, and the P (pap) and S (sfa) fimbria gene clusters. All four loci were shown previously to be associated with pathogenicity islands of uropathogenic E. coli isolates. The hly, kps, sfa, and pap regions each have an unexpected clustered distribution among the E. coli collection of reference (ECOR) strains, but all these regions were absent from a collection of diarrheagenic E. coli isolates. Strains in the ECOR subgroup B2 typically had a combination of at least three of the four loci, and all strains in subgroup D had a copy of the kps and pap clusters. In contrast, only four strains in subgroup A had either hly, kps, sfa, or pap, and no subgroup A strains had all four together. Strains of subgroup B1 were devoid of all four virulence regions, with the exception of one isolate that had a copy of the sfa gene cluster. This phylogenetic distribution of strain-specific sequences corresponds to the ECOR groups with the largest genome size, namely, B2 and D. We propose that the pathogenicity islands are ancestral to subgroups B2 and D and were acquired after speciation, with subsequent horizontal transfer into some group A, B1, and E lineages. These results suggest that the hly, kps, sfa, and pap pathogenicity determinants may play a role in the evolution of enteric bacteria quite apart from, and perhaps with precedence over, their ability to cause disease.  相似文献   

7.
Our results show that experimental evolution mimics evolution in nature. In particular, only 1000 generations of periodic recombination with immigrant genotypes is enough for linkage disequilibrium values in experimental populations to change from a maximum linkage value to a value similar to the one observed in wild strains of E. coli. Our analysis suggests an analogy between the recombination experiment and the evolutionary history of E. coli; the E. coligenome is a patchwork of genes laterally inserted in a common backbone, and the experimental E. coli chromosome is a patchwork where some sites are highly prone to recombination and others are very clonal. In addition, we propose a population model for wild E. coli where gene flow (recombination and migration) are an important source of genetic variation, and where certain hosts act as selective sieves; i.e., the host digestive system allows only certain strains to adhere and prosper as resident strains generating a particular microbiota in each host. Therefore we suggest that the strains from a wide range of wild hosts from different regions of the world may present an ecotypic structure where adaptation to the host may play an important role in the population structure. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Our understanding of the composition of Escherichia coli populations in wild boars is very limited. In order to obtain insight into the E. coli microflora of wild boars, we studied E. coli isolates from the jejunums, ileums, and colons of 21 wild boars hunted in five geographic locations in Germany. Ten isolates per section were subjected to clonal determination using pulsed-field gel electrophoresis. One representative isolate per clone was further investigated for virulence traits, phylogenetic affiliation, and antimicrobial susceptibility. Macrorestriction analysis of 620 isolates revealed a range of clone diversity among the sections and animals, with up to 9 and 16 different clones per section and animal, respectively. Most of the clones for a given animal were shared between two adjacent intestinal sections. The overall highest clonal diversity was observed within the colon. While the astA gene was present in a large number of clones, other virulence genes and hemolytic ability were detected only sporadically. Clones of all four ECOR groups dominated the intestinal sections. Phylogenetic analysis and the occurrence of virulence genes correlated with the isolation frequencies for clones. All E. coli clones from wild boars were susceptible to all antimicrobial agents tested. In conclusion, though several parameters (including an animal-specific and highly diverse E. coli clone composition, the simultaneous occurrence of single clones in two adjacent intestinal sections of a given animal, and a higher E. coli diversity in the large intestine than in the small intestine) of E. coli populations of wild boars were similar to those of previously described E. coli populations of conventionally reared domestic pigs, our data also indicate possible differences, as seen for the E. coli diversity in the large intestine, the occurrence of certain virulence genes and phylogenetic groups, and antimicrobial susceptibilities.  相似文献   

9.
Escherichia coli isolates were obtained from common host sources of fecal pollution and characterized by using repetitive extragenic palindromic (REP) PCR fingerprinting. The genetic relationship of strains within each host group was assessed as was the relationship of strains among different host groups. Multiple isolates from a single host animal (gull, human, or dog) were found to be identical; however, in some of the animals, additional strains occurred at a lower frequency. REP PCR fingerprint patterns of isolates from sewage (n = 180), gulls (n = 133), and dairy cattle (n = 121) were diverse; within a host group, pairwise comparison similarity indices ranged from 98% to as low as 15%. A composite dendrogram of E. coli fingerprint patterns did not cluster the isolates into distinct host groups but rather produced numerous subclusters (approximately >80% similarity scores calculated with the cosine coefficient) that were nearly exclusive for a host group. Approximately 65% of the isolates analyzed were arranged into host-specific groups. Comparable results were obtained by using enterobacterial repetitive intergenic consensus PCR and pulsed-field gel electrophoresis (PFGE), where PFGE gave a higher differentiation of closely related strains than both PCR techniques. These results demonstrate that environmental studies with genetic comparisons to detect sources of E. coli contamination will require extensive isolation of strains to encompass E. coli strain diversity found in host sources of contamination. These findings will assist in the development of approaches to determine sources of fecal pollution, an effort important for protecting water resources and public health.  相似文献   

10.
Escherichia coli is the most completely characterized prokaryotic model organism and one of the dominant indicator organisms for food and water quality testing, yet comparatively little is known about the structure of E. coli populations in their various hosts. The diversities of E. coli populations isolated from the feces of three host species (human, cow, and horse) were compared by two subtyping methods: ribotyping (using HindIII) and antibiotic resistance analysis (ARA). The sampling effort required to obtain a representative sample differed by host species, as E. coli diversity was consistently greatest in horses, followed by cattle, and was lowest in humans. The diversity of antibiotic resistance patterns isolated from individuals was consistently greater than the diversity of ribotypes. E. coli populations in individuals sampled monthly, over a 7- to 8-month period, were highly variable in terms of both ribotypes and ARA phenotypes. In contrast, E. coli populations in cattle and humans were stable over an 8-h period. Following the cessation of antibiotic therapy, the E. coli population in the feces of one human experienced a rapid and substantial shift, from a multiply antibiotic-resistant phenotype associated with a particular ribotype to a relatively antibiotic-susceptible phenotype associated with a different ribotype. The high genetic diversity of E. coli populations, differences in diversity among hosts, and temporal variability all indicate complex population dynamics that influence the usefulness of E. coli as a water quality indicator and its use in microbial source tracking studies.  相似文献   

11.

Background

Whipworms (Trichuris sp.) are a globally distributed genus of parasitic helminths that infect a diversity of mammalian hosts. Molecular methods have successfully resolved porcine whipworm, Trichuris suis, from primate whipworm, T. trichiura. However, it remains unclear whether T. trichiura is a multi-host parasite capable of infecting a wide taxonomic breadth of primate hosts or a complex of host specific parasites that infect one or two closely related hosts.

Methods and Findings

We examined the phylogenetic structure of whipworms in a multi-species community of non-human primates and humans in Western Uganda, using both traditional microscopy and molecular methods. A newly developed nested polymerase chain reaction (PCR) method applied to non-invasively collected fecal samples detected Trichuris with 100% sensitivity and 97% specificity relative to microscopy. Infection rates varied significantly among host species, from 13.3% in chimpanzees (Pan troglodytes) to 88.9% in olive baboons (Papio anubis). Phylogenetic analyses based on nucleotide sequences of the Trichuris internal transcribed spacer regions 1 and 2 of ribosomal DNA revealed three co-circulating Trichuris groups. Notably, one group was detected only in humans, while another infected all screened host species, indicating that whipworms from this group are transmitted among wild primates and humans.

Conclusions and Significance

Our results suggest that the host range of Trichuris varies by taxonomic group, with some groups showing host specificity, and others showing host generality. In particular, one Trichuris taxon should be considered a multi-host pathogen that is capable of infecting wild primates and humans. This challenges past assumptions about the host specificity of this and similar helminth parasites and raises concerns about animal and human health.  相似文献   

12.
We examined the genetic structure and symbiotic characteristics of Bradyrhizobium isolates recovered from four legume species (Lupinus albus [white lupine], Lupinus angustifolius [blue lupine], Ornithopus compressus [yellow serradella], and Macroptilium atropurpureum [sirato]) grown in an Oregon soil. We established that multilocus enzyme electrophoresis (MLEE) can provide insights into the genetic relatedness among Bradyrhizobium strains by showing a positive correlation (r2 = ≥0.90) between the relatedness of Bradyrhizobium japonicum strains determined by MLEE at 13 enzyme loci and that determined by other workers using either DNA-DNA hybridization or DNA sequence divergence estimates. MLEE identified 17 electrophoretic types (ETs) among 95 Bradyrhizobium isolates recovered from the four hosts. Although the overall genetic diversity among the ETs (H = 0.69) is one of the largest measured to date in a local population of any soilborne bacterial species, there was no evidence of multilocus structure (linkage disequilibrium) within the population. The majority of the isolates (73%) were represented by two closely related ETs (2 and 3) which dominated the root nodules of white lupine, serradella, and siratro. In contrast, ET1 dominated nodules of blue lupine. Although representative isolates from all of the 17 ETs nodulated siratro, white lupine, blue lupine, and big trefoil (Lotus pedunculatus), they were either completely ineffective or poorly effective at fixing nitrogen on these hosts. Despite the widespread use of serradella as a surrogate host for lupine-nodulating bradyrhizobia, 7 of the 17 ETs did not nodulate this host, and the remaining 10 ETs were ineffective at fixing nitrogen.  相似文献   

13.
Escherichia coli strains in water may originate from various sources, including humans, farm and wild animals, waterfowl, and pets. However, potential human health hazards associated with E. coli strains present in various animal hosts are not well known. In this study, E. coli strains from diverse human and animal sources in Minnesota and western Wisconsin were analyzed for the presence of genes coding for virulence factors by using multiplex PCR and biochemical reactions. Of the 1,531 isolates examined, 31 (2%) were found to be Shiga toxin-producing E. coli (STEC) strains. The majority of these strains, which were initially isolated from the ruminants sheep, goats, and deer, carried the stx1c and/or stx2d, ehxA, and saa genes and belonged to E. coli phylogenetic group B1, indicating that they most likely do not cause severe human diseases. All the STEC strains, however, lacked eae. In contrast, 26 (1.7%) of the E. coli isolates examined were found to be potential enteropathogenic E. coli (EPEC) strains and consisted of several intimin subtypes that were distributed among various human and animal hosts. The EPEC strains belonged to all four phylogenetic groups examined, suggesting that EPEC strains were relatively widespread in terms of host animals and genetic background. Atypical EPEC strains, which carried an EPEC adherence factor plasmid, were identified among E. coli strains from humans and deer. DNA fingerprint analyses, done using the horizontal, fluorophore-enhanced repetitive-element, palindromic PCR technique, indicated that the STEC, potential EPEC, and non-STEC ehxA-positive E. coli strains were genotypically distinct and clustered independently. However, some of the potential EPEC isolates were genotypically indistinguishable from nonpathogenic E. coli strains. Our results revealed that potential human health hazards associated with pathogenic E. coli strains varied among the animal hosts that we examined and that some animal species may harbor a greater number of potential pathogenic strains than other animal species.  相似文献   

14.
Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental, and host-related factors that influence transmission patterns.  相似文献   

15.
Escherichia coli O26 has been identified as the most common non-O157 Shiga toxin-producing E. coli (STEC) serogroup to cause human illnesses in the United States and has been implicated in outbreaks around the world. E. coli has high genomic plasticity, which facilitates the loss or acquisition of virulence genes. Attaching and effacing E. coli (AEEC) O26 strains have frequently been isolated from bovine feces, and there is a need to better characterize the relatedness of these strains to defined molecular pathotypes and to describe the extent of their genetic diversity. High-throughput real-time PCR was used to screen 178 E. coli O26 isolates from a single U.S. cattle feedlot, collected from May to July 2011, for the presence or absence of 25 O26 serogroup-specific and virulence-associated markers. The selected markers were capable of distinguishing these strains into molecularly defined groups (yielding 18 unique marker combinations). Analysis of the clustered regularly interspaced short palindromic repeat 1 (CRISPR1) and CRISPR2a loci further discriminated isolates into 24 CRISPR types. The combination of molecular markers and CRISPR typing provided 20.8% diversity. The recent CRISPR PCR target SP_O26-E, which was previously identified only in stx2-positive O26:H11 human clinical strains, was identified in 96.4% (161/167 [95% confidence interval, 99.2 to 93.6%]) of the stx-negative AEEC O26:H11 bovine fecal strains. This supports that these stx-negative strains may have previously contained a prophage carrying stx or could acquire this prophage, thus possibly giving them the potential to become pathogenic to humans. These results show that investigation of specific genetic markers may further elucidate our understanding of the genetic diversity of AEEC O26 strains in bovine feces.  相似文献   

16.
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.  相似文献   

17.
Molecular phylogeny of the species Escherichia coli using the E. coli reference (ECOR) collection strains has been hampered by (1) the absence of rooting in the commonly used phenogram obtained from multilocus enzyme electrophoresis (MLEE) data and (2) the existence of recombination events between strains that scramble phylogenetic trees reconstructed from the nucleotide sequences of genes. We attempted to determine the phylogeny for E. coli based on the ECOR strain data by extracting from GenBank the nucleotide sequences of 11 chromosomal structural and 2 plasmid genes for which the Salmonella enterica homologous gene sequences were available. For each of the 13 DNA data sets studied, incongruence with a nonnucleotide whole-genome data set including MLEE, random amplified polymorphic DNA, and rrn restriction fragment length polymorphism data was measured using the incongruence length difference (ILD) test of Farris et al. As previously reported, the incongruence observed between the gnd and plasmid gene data and the whole-genome data was multiple, indicating numerous horizontal transfer and/or recombination events. In five cases, the incongruence detected by the ILD test was punctual, and the donor group was identified. Congruence was not rejected for the remaining data sets. The strains responsible for incongruences with the whole-genome data set were removed, leading to a "prior-agreement" approach, i.e., the determination of a phylogeny for E. coli based on several genes, excluding (1) the genes with multiple incongruences with the whole genome data, (2) the strains responsible for punctual incongruences, and (3) the genes incongruent with each other. The obtained phylogeny shows that the most basal group of E. coli strains is the B2 group rather than the A group, as generally thought. The D group then emerges as the sister group of the rest. Finally, the A and B1 groups are sister groups. Interestingly, the most primitive taxon within E. coli in terms of branching pattern, i.e., the B2 group, includes highly virulent extraintestinal strains with derived characters (extraintestinal virulence determinants) occurring on its own branch.   相似文献   

18.
Escherichia coli has commonly been associated with diarrheal illness in humans and animals. Recently, E. albertii has been reported to be a potential pathogen of humans and animals and to be carried by wild birds. In the present study, the prevalence and genetic characteristics of intimin-producing E. coli and E. albertii strains were evaluated in wild birds in Korea. Thirty one of 790 Enterobacteriaceae strains from healthy wild birds were positive for the intimin gene (eaeA) and twenty two of the 31 strains were identified as atypical enteropathogenic E. coli (aEPEC) that did not possess both EAF and bfpA genes. A total of nine lactose non-fermenting coliform bacterial strains were identified as E. albertii by PCR and sequence analysis of housekeeping genes. A total of 28 (90.3%) eaeA-positive strains were isolated from waterfowl. Fifteen aEPEC (68.2%) and two E. albertii (22.2%) strains had a β-intimin subtype and 14 aEPEC strains harboring β-intimin belonged to phylogenetic group B2. AU eaeA-positive E. albertii and 3 aEPEC strains possessed the cytolethal distending toxin gene (cdtB). The eaeA-positive E. coli and E. albertii strains isolated from healthy wild birds need to be recognized as a potential pathogroup that may pose a potential threat to human and animal health. These findings indicate that eaeA-positive E. coli as well as E. albertii can be carried by wild birds, posing a potential threat to human and animal health.  相似文献   

19.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

20.
Fecal pollution of water resources is an environmental problem of increasing importance. Identification of individual host sources of fecal Escherichia coli, such as humans, pets, production animals, and wild animals, is prerequisite to formulation of remediation plans. Ribotyping has been used to distinguish fecal E. coli of human origin from pooled fecal E. coli isolates of nonhuman origin. We have extended application of this technique to distinguishing fecal E. coli ribotype patterns from human and seven individual nonhuman hosts. Classification accuracy was best when the analysis was limited to three host sources. Application of this technique to identification of host sources of fecal coliforms in water could assist in formulation of pollution reduction plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号