首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many squamous cell carcinomas (SCCs) are characterized by high levels of EGFR and by overexpression of the ΔNp63α isoform. Here, we investigated the regulation of ΔNp63α expression upon EGFR activation and the role of the EGFR–ΔNp63α axis in proliferation of SCC tumor‐initiating cells (TICs). SCC cell lines A‐431, Cal‐27, and SCC‐25 treated with EGF showed a time‐dependent increase in ΔNp63α expression at the protein and mRNA levels, which was blocked by the tyrosine kinase inhibitor (TKI) Lapatinib. RNA interference experiments suggested the role of STAT3 in regulating ΔNp63α expression downstream of EGFR. Inactivation of EGFR by the monoclonal antibody Cetuximab and RNA interference against STAT3 or ΔNp63α impaired the TICs ability to grow under non‐differentiating conditions. Radiation treatment, which triggers EGFR activation, induced ΔNp63α accumulation without affecting TICs proliferation, whereas the combination Cetuximab plus radiation significantly reduced TICs growth under non‐differentiating conditions. Together, our findings provide evidence that ΔNp63α expression is regulated by EGFR activation through STAT3 and that the EGFR–ΔNp63α axis is crucial for proliferation of TICs present in SCCs. J. Cell. Physiol. 228: 871–878, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
5.
Hau PM  Yip YL  Huen MS  Tsao SW 《FEBS letters》2011,585(17):2720-2726
Protein p63 is a key regulator in cell proliferation and cell differentiation in stratified squamous epithelium. ΔNp63α is the most commonly expressed p63 isoform, which is often overexpressed in human tumor. In the present work we report the potential involvement of ΔNp63α in cell cycle regulation. ΔNp63α accumulated in mitotic cells but its expression decreased during mitotic exit. Moreover, ΔNp63α knockdown promoted mitotic exit. ΔNp63α shares a conserved destruction box (D-box) motif with other potential targets of the Anaphase-Promoting Complex/Cyclosome (APC/C). Overexpression of APC/C coactivator Cdh1 destabilized ΔNp63α. Our results suggest that ΔNp63α level is cell cycle-regulated and may play a role in the regulation of mitotic exit.  相似文献   

6.
7.
8.
9.
p63 is critical for squamous epithelial development, and elevated levels of the ΔNp63α isoform are seen in squamous cell cancers of various organ sites. However, significant controversy exists regarding the role of p63 isoforms as oncoproteins or tumor suppressors. Here, lentiviruses were developed to drive long-term overexpression of ΔNp63α in primary keratinocytes. Elevated levels of ΔNp63α in vitro promote long-term survival and block both replicative and oncogene-induced senescence in primary keratinocytes, as evidenced by the expression of SA-β-gal and the presence of nuclear foci of heterochromatin protein 1γ. The contribution of ΔNp63α to cancer development was assessed using an in vivo grafting model of experimental skin tumorigenesis that allows distinction between benign and malignant tumors. Grafted lenti-ΔNp63α keratinocytes do not form tumors, whereas lenti-GFP/v-ras(Ha) keratinocytes develop well-differentiated papillomas. Lenti-ΔNp63α/v-ras(Ha) keratinocytes form undifferentiated carcinomas. The average volume of lenti-ΔNp63α/v-ras(Ha) tumors was significantly higher than those in the lenti-GFP/v-ras(Ha) group, consistent with increased BrdU incorporation detected by immunohistochemistry. The block in oncogene-induced senescence corresponds to sustained levels of E2F1 and phosphorylated AKT, and is associated with loss of induction of p16(ink4a)/p19(arf). The relevance of p16(ink4a)/p19(arf) loss was demonstrated in grafting studies of p19(arf)-null keratinocytes, which develop malignant carcinomas in the presence of v-ras(Ha) similar to those arising in wildtype keratinocytes that express lenti-ΔNp63α and v-ras(Ha). Our findings establish that ΔNp63α has oncogenic activity and its overexpression in human squamous cell carcinomas contributes to the malignant phenotype, and implicate its ability to regulate p16(ink4a)/p19(arf) in the process.  相似文献   

10.
11.
ΔNp63α, implicated as an oncogene, is upregulated by activated Akt, part of a well-known cell survival pathway. Inhibition of Akt activation by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and the presence of putative p63-binding sites in the pten promoter led us to investigate whether ΔNp63α regulates PTEN expression. Knockdown of ΔNp63α led to increases in PTEN levels and loss of activated Akt, while overexpression of ΔNp63α decreased PTEN levels and elevated active Akt. The repression of PTEN by ΔNp63α occurs independently of p53 status, as loss of ΔNp63α increases PTEN expression in cell lines with and without functional p53. In addition, decreased levels of ΔNp63α resulted in an increase in nuclear PTEN. Conversely, in vivo nuclear PTEN was absent in the proliferative basal layer of the epidermis where ΔNp63α expression is highest. Additionally, we show that in keratinocytes a balance between ΔNp63α and PTEN regulates Akt activation and maintains normal proliferation rates. This balance is disrupted in non-melanoma skin cancers through increased ΔNp63α levels, and could enhance proliferation and subsequent neoplastic development. Our studies show that ΔNp63α negatively regulates PTEN, thereby providing a feedback loop between PTEN, Akt and ΔNp63α, which has an integral role in skin cancer development.  相似文献   

12.
13.
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.  相似文献   

14.
15.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be down regulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NF-κΒ in presence of cisplatin. We find that NF-κΒ promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NF-κΒ leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NF-κΒ with siRNA-mediated silencing NF-κΒ expression attenuates chemotherapy induced degradation of ΔNp63α . These data demonstrate that NF-κΒ plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NF-κΒ may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.  相似文献   

16.
17.
p63 belongs to a member of the tumor suppressor protein p53 family. Due to alternative promoter usage, two types of p63 proteins are produced. The ΔNp63 isoform lacks the N‐terminal transactivation domain and is thought to antagonize TAp63 and p53 in target gene regulation. ΔNp63 has been found to be overexpressed in numerous human squamous cell carcinomas, including nasopharyngeal carcinoma (NPC). However, the role of ΔNp63 overexpression in NPC pathogenesis has not been clear. In this study, we use a ΔNp63 overexpressing human NPC cell line (NPC‐076) to explore the possible roles of ΔNp63 in cell proliferation and cell‐cycle regulation. We found that the proliferation of NPC‐076 cell is greatly suppressed when the overexpressed ΔNp63 is silenced by specific ΔNp63 siRNA. Further studies show that ΔNp63 silencing results in the upregulation of CKIs, including p27kip1 and p57kip2 in both mRNA and protein levels. Cell‐cycle analysis shows that ΔNp63 silencing also results in an increased G1 phase cell and apoptotic cell population. Our findings indicate that ΔNp63 plays important roles in the regulation of NPC‐076 cell‐cycle progression, and may play a role in the maintenance of NPC‐076 tumor cell phenotype. J. Cell. Physiol. 219: 117–122, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.
The p53 family member p63 plays an essential role in the developing epithelium, and overexpression of the ΔNp63a isoform is frequently observed in human squamous cell carcinomas (SCCs). These findings have suggested that ΔNp63a might function as an oncogene within squamous epithelial cells. Nevertheless, the mechanism by which ΔNp63a might promote tumorigenesis remains poorly understood, and data from mouse models implies that the p63 locus might in fact function as a tumor suppressor in these same tissues. A recent study using RNA interference in human SCC-derived cell lines shows that ΔNp63a mediates an essential survival function in human SCC cells by virtue of its ability to suppress the pro-apoptotic function of the related p53 family member p73. These findings support an oncogenic role for ΔNp63a and they demonstrate the existence of critical physical and functional interactions between endogenous p53 family members in human cancer. Specific chemotherapeutic agents and future targeted approaches may be able to exploit this pathway to therapeutic advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号