首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

11.
12.
Hypoxia-inducible factor 1 (HIF-1) is regulated by the oxygen-dependent hydroxylation of proline residues by prolyl hydroxylases (PHDs). We recently developed a novel PHD inhibitor, TM6008, that suppresses the activity of PHDs, inducing continuous HIF-1α activation. In this study, we investigated how TM6008 affects cell survival after hypoxic conditions capable of inducing HIF-1α expression and how TM6008 regulates PHDs and genes downstream of HIF-1α. After SHSY-5Y cells had been subjected to hypoxia, TM6008 was added to the cell culture medium under normoxic conditions. Apoptotic cell death was significantly augmented just after the hypoxic conditions, compared with cell death under normoxic conditions. Notably, when TM6008 was added to the media after the cells had been subjected to hypoxia, the expression level of HIF-1α increased and the number of cell deaths decreased, compared with the results for cells cultured in media without TM6008 after hypoxia, during the 7-day incubation period under normoxic conditions. Moreover, the protein expression levels of heme oxygenase 1, erythropoietin, and glucose transporter-3, which were genes downstream of HIF-1α, were elevated in media to which TM6008 had been added, compared with media without TM6008, during the 7-day incubation period under normoxic conditions. However, the protein expression levels of PHD2 and p53 which suppressed cell proliferation were suppressed in the media to which TM6008 had been added. Thus, TM6008, which suppresses the protein expressions of PHD2 and p53, might play an important role in cell survival after hypoxic conditions, with possible applications as a new compound for treatment after ischemic stroke.  相似文献   

13.
Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors   总被引:13,自引:0,他引:13  
Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation.  相似文献   

14.
15.
16.
17.
18.
19.

Background

The endothelin B receptor (ETBR) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1α is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.

Principal Findings

Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ETBR, enhance the expression and activity of HIF-1α and HIF-2α that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-α stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1α oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ETBR markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ETBR-mediated PHD2 inhibition, HIF-1α, HIF-2α, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1α, ETBR expression is associated with low PHD2 levels. In melanoma xenografts, ETBR blockade by ETBR antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1α, and HIF-2α expression, and an increase in PHD2 levels.

Conclusions

In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1α stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ETBR may represent a potential therapeutic treatment of melanoma by impairing HIF-1α stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号