首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The effect of the combined use of Encarsia formosa or Macrolophus caliginosus and one of three marketed mycoinsecticides, Mycotal® (Leucanicillium muscarium-based), Naturalis-L™ (Beauveria bassiana-based) and PreFeRal® (Isaria fumosorosea-based), on the control of the whitefly, Trialeurodes vaporariorum, was studied under laboratory and greenhouse conditions. The results of both types of tests, the bioassays and the greenhouse trials, for all combinations of E. Formosa with each of the three mycoinsecticides showed that the total mortality of larval populations of T. vaporariorum was not affected. The mortality of T. vaporariorum larvae treated in the second instar revealed the capacity for both B. bassiana- and L. muscarium-based formulations and E. formosa to kill the host either separately or in association. Because of its higher pathogenic activity (under our test conditions), L. muscarium provoked a large proportion of mycoses in larvae exposed to parasitization. In contrast, the efficacy of parasitization was higher in larvae treated with B. bassiana and exposed to E. formosa because of a lower pathogenic activity of the fungus. Bioassays carried out with third-instar larvae of T. vaporariorum showed a low susceptibility to both tested fungi. Consequently, mortalities recorded in larvae subjected to the combined treatments by consecutive exposures or at 2-4 days post-parasitization were mainly caused by the development of the parasitoid. Greenhouse trials showed that fungus-induced mortality of T. vaporariorum in plants treated with L. muscarium, I. fumosorosea, and B. Bassiana was significant compare to control. L. muscarium, B. bassiana and I. fumosorosea killed young whitefly larvae and limited parasitization to 10% or less. Second-instar larvae of M. caliginosus were not susceptible to L. muscarium and B. bassiana formulations with any mode of contamination: direct spraying of larvae, spraying on the foliar substrate or by contaminated T. vaporariorum prey. In greenhouse trials, M. caliginosus populations treated with fungi were not significantly affected compared to controls.  相似文献   

2.
A new entomopathogenic fungus, described here as Neozygites abacaridis n. sp. (Zygomycetes: Entomophthorales), has been found on the mites Abacarus hystrix, Aculodes dubius, and A. mckenziei (Acari: Eriophyidae). It differs from other Neozygites species affecting mites by its small, globose primary conidia, short-ovoid, smoky coloured capilliconidia, and very short capillary conidiophores-which are usually not longer than the spore length. This pathogen infected mite individuals in autumn (from mid-August until mid-November) on Lolium perenne, Agrostis stolonifera, and Festuca rubra. It caused 0.5-1% host's mortality in the vicinity of Siedlce (Eastern Poland) and up to 2-8%, on an average in Puszczykowo (Wielkopolski National Park near Poznań), where its prevalence on some plants reached 13%.  相似文献   

3.
In order to identify the whitefly molting hormone, whole body extracts of mature 4th instar and newly formed pharate adult Bemisia tabaci (Biotype B) and Trialeurodes vaporariorum were prepared and subjected to reverse phase high performance liquid chromatography (RPHPLC). Ecdysteroid content of fractions was determined by enzymeimmunoassay (EIA). The only detectable ecdysteroids that were present in significant amounts in whitefly extracts were ecdysone and 20-hydroxyecdysone. The concentrations of 20-hydroxyecdysone in B. tabaci and T. vaporariorum extracts, respectively, were 40 and 15 times greater than the concentrations of ecdysone. The identity of the two ecdysteroids was confirmed by normal phase high performance liquid chromatography (NPHPLC). When ecdysteroid content of RPHPLC fractions was assayed by radioimmunoassay (RIA), small amounts of polar ecdysteroids were also detected indicating that these ecdysteroids have a very low affinity for the antiserum used in the EIA. Ecdysteroid at 10.4 mM administered by feeding stimulated 2nd instar whitefly nymphs to molt. Based on our results, it appears that 20-hydroxyecdysone is the whitefly molting hormone.  相似文献   

4.
The epizootiology of Amblyospora camposi was studied in a natural population of Culex renatoi, a bromeliad-inhabiting mosquito, and its intermediate host, Paracyclops fimbriatus fimbriatus, over a 2-year period. Twenty Eryngium cabrerae plants were sampled monthly from January 2003 to January 2005 and the prevalence of A. camposi in P.f. fimbriatus and Cx. renatoi populations was determined. The monthly prevalence rates of meiospore infections in Cx. renatoi larvae never exceeded 5.5% and was detected in 50% of the monthly samples. Meiospores were available in plants over the course of the study at a mean concentration of 2 x 10(4) meiospores/ml. Within each plant the parasite was maintained by horizontal transmission. P.f. fimbriatus with vegetative stages and mature spores were found regularly in bromeliads suggesting efficient meiospore infectivity to field copepod populations. The mean concentration of spores from copepods found in plants was 8 x 10(2) spores/ml. Infections in copepods were detected in 54% of the monthly samples with a prevalence rate ranging from 0.55 to 17.4% and an overall average of 5.1%. Vegetative stages in fourth instar mosquito larvae (probably derived from the horizontal pathway via spores formed in copepods) were detected in 12.5% of the monthly samples with an overall prevalence rate of 1.1%. Infections in female and male adults were detected in 20.8% of the monthly samples with an overall average of 4.1% and 6.8%, respectively.  相似文献   

5.
Entomopathogenic fungi of the genus Aschersonia are specific for whitefly and scale insects. They can be used as biological control agents against silverleaf whitefly, Bemisia argentifolii and greenhouse whitefly, Trialeurodes vaporariorum. Forty-four isolates of Aschersonia spp. were tested for their ability to sporulate and germinate on semi-artificial media and to infect insect hosts. Seven isolates sporulated poorly (less than 1x10(7) conidia/dry weight) and 10 were not able to infect either of the whitefly species. Several isolates were able to produce capilliconidia. Infection level was not correlated with germination on water agar. After a selection based on spore production and infection, virulence of 31 isolates was evaluated on third instar nymphs of both whitefly species on poinsettia (Euphorbia pulcherrima). Whitefly infection levels varied between 2 and 70%, and infection percentages of B. argentifolii correlated with that of T. vaporariorum. However, mortality was higher for T. vaporariorum than for B. argentifolii, as a result of a higher 'mortality due to unknown causes.' Several isolates, among which unidentified species of Aschersonia originating from Thailand and Malaysia, A. aleyrodis from Colombia, and A. placenta from India showed high spore production on semi-artificial medium and high infection levels of both whitefly species.  相似文献   

6.
Ascogregarina infections from South America were recently documented in Brazil and Argentina. The aim of this study was to report our recent findings on the prevalence and seasonality of Ascogregarina culicis in Aedes aegypti adults from temperate Argentina. Between December 2003 and May 2005, 391 females of Ae. aegypti were captured in two areas of Greater Buenos Aires. Overall prevalence of A. culicis was 21.2% (83/391), and a significant difference was observed between both areas (28.4% vs. 8%). Infected Ae. aegypti were found from November to May, with highest values in March (24-37%). Parasite prevalence and host abundance showed similar seasonal patterns. Our observations suggest a widespread infestation of A. culicis among Ae. aegypti populations from temperate Argentina.  相似文献   

7.
Geosmithia is a genus of mitosporic filamentous fungi typically associated with phloeophagous bark beetles world-wide. During this study, the fungal associates of ambrosia beetles Cnesinus lecontei, Eupagiocerus dentipes, and Microcorthylus sp. from Costa Rica, were studied using morphology and DNA sequences. Fungal associates belonged to four undescribed Geosmithia species. Geosmithia eupagioceri sp. nov. and G. microcorthyli sp. nov. are evidently primary ambrosia fungi of their respective vectors E. dentipes and Microcorthylus species. They both have convergently evolved distinct morphological adaptations including the production of large, solitary and globose conidia, and yeast-like cells. Tunnels of C. lecontei contained an undescribed Geosmithia species, but its nutritional importance for its vector is unclear. An auxiliary ambrosia fungus, Geosmithia rufescens sp. nov., was found associated with both G. eupagioceri and the Geosmithia species associated with C. lecontei. G. microcorthyli is genetically quite similar to the phloem-associated Geosmithia sp. 8 from Europe. Large differences in morphology between these two species suggest the rapid co-evolution resulting from the close symbiosis of the former with its beetle host. The ITS rDNA sequences of G. microcorthyli and Geosmithia sp. 8 were not diagnostic, suggesting that alternative markers such as EF-1α, IGS rDNA or β-tubulin should be used, together with morphological and ecological data, for species delimitation in this genus. The primary ambrosia fungi described here are derived from phloem-associated ancestors, and represent two independent lineages of ambrosia fungi in the Hypocreales and a new ecological strategy within Geosmithia.  相似文献   

8.
Clonostachys rosea (Link: Fries) Schroers, Samuels, Seifert, and Gams (Ascomycota: Hypocreales) has been reported as a mycoparasite of fungi and nematodes and as saprobe in soils, but this fungus has not been reported previously to be entomopathogenic. Many species of cicadellid leafhoppers cause economic damage to crops as vectors of plant pathogens. In the present work, we report the first record of C. rosea as an entomopathogenic fungus of two leafhoppers pest, Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae), in Argentina and evaluate the pathogenicity of C. rosea against them.  相似文献   

9.
Ecdysteroids and juvenile hormones (JHs) regulate many physiological events throughout the insect life cycle, including molting, metamorphosis, ecdysis, diapause, reproduction, and behavior. Fluctuation of whitefly ecdysteroid levels and the identity of the whitefly molting hormone (20-hydroxyecdysone) have only been reported within the last few years. An ecdysteroid commitment peak that is associated with the reprogramming of tissues for a metamorphic molt in many holometabolous and some hemimetabolous insect species was not observed in last nymphal instars of either the sweet potato whitefly, Bemisia tabaci (Biotype B), or the greenhouse whitefly, Trialeurodes vaporariorum. Ecdysteroids reach peak levels 1-2 days prior to the initiation of the nymphal-adult metamorphic molt. Adult eye and wing differentiation which signal the onset of this molt begin earlier in 4th instar T. vaporariorum (Stages 4 and 5, respectively) than in B. tabaci (Stage 6), and the premolt peak is 3-4 times greater in B. tabaci ( approximately 400 fg/microg protein) than in T. vaporariorum ( approximately 120 fg/microg protein). The JH of B. tabaci nymphs and eggs was found to be JH III, supporting the view that JHs I and II are, with rare exception, only present in lepidopteran insects. In B. tabaci eggs, JH levels were approximately 10 times greater on day 2/3 (0.44 fg/egg or 0.54 ng/g) than on day 5 (0.04 fg/egg or 0.054 ng/g) post-oviposition. Approximately, 1.4 fg/2nd-3rd instar nymph (0.36 ng/g) was detected. It is probable that the relatively high level of JH in day 2/3 eggs is associated with the differentiation of various whitefly tissues during embryonic development.  相似文献   

10.
Collaborative research was conducted in the south of France to assess constraints related to both climate heterogeneity and ventilation systems on the control potential of a Lecanicillium muscarium-based formulation against whiteflies in Mediterranean greenhouses. Four series of small-scale greenhouse trials were performed in 2001 and 2002. Two applications at 4–5 day intervals of Mycotal were conducted on young larvae of the greenhouse whitefly, Trialeurodes vaporariorum, at the rate recommended by the manufacturer (ca. 1010 viable spores per liter of water suspension). The climatic heterogeneity was taken into account by comparing the fungus-induced mortality of nymphs located on lateral row plants to that of nymphs on center row plants. In spite of significant differences in air flows (0.7–1.2 and 0.3 ms−1, respectively) there was no effect on fungus efficacy (53–76% mortality). When comparing the influence of greenhouse equipment (sophisticated glasshouse vs. polyethylene-covered greenhouse), the fungus was not affected (89–96% mortality) in spite of significant differences in ventilation rates. The results confirmed that entomopathogenic Hyphomycetes have a strong potential for microbial control of whitefly larvae infesting tomato crops at moderate ambient humidity in Mediterranean greenhouses in spite of windy periods. These investigations confirmed that microclimatic conditions prevailing in the targeted insect habitat (under-leaf surface boundary layer) are greatly disconnected from that of both outside and inside the greenhouse. In northern Mediterranean greenhouses, non-stressed tomato crops provide unexpected favorable conditions for mycoinsecticide use against a phyllophagous insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号