首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Pentoxifylline (PTX), a methylxanthine derivative widely used as a hemorheological agent in the treatment of peripheral vascular disease, was studied to unveil the mechanisms responsible for its inhibitory action on B16-F10 experimental metastasis. In vitro pretreatment of B16-F10 cells with noncytotoxic concentrations of PTX significantly inhibited their adhesion to reconstituted basement membrane Matrigel® and type IV collagen as well as the relative activity of secreted 92 kD metalloproteinase. However, PTX pretreatment of B16-F10 cells did not affect their in vitro invasiveness. Heterotypic organ adhesion assays carried out with B16-F10 cells and suspended organ tissues demonstrated that pretreatment with noncytotoxic concentrations of PTX of both, tumor cells or lung tissue, brought about a dose-dependent inhibition of melanoma cell adhesion to lung. Immunohistochemical studies using antibodies against CD31 adhesion molecule (PECAM-1) revealed that B16-F10 cells adhere to lung endothelial cells. Our results suggest that PTX may exert its inhibitory effect on tumor lodgment, and as a consequence of that on experimental metastases, through an inhibitory action on cell adhesion molecules.  相似文献   

2.
Metastasis is major cause of malignant cancer-associated mortality. Fucoxanthin has effect on various pharmacological activities including anti-cancer activity. However, the inhibitory effect of fucoxanthin on cancer metastasis remains unclear. Here, we show that fucoxanthin isolated from brown alga Saccharina japonica has anti-metastatic activity. To check anti-metastatic properties of fucoxanthin, in vitro models including assays for invasion, migration, actin fiber organization and cancer cell–endothelial cell interaction were used. Fucoxanthin inhibited the expression and secretion of MMP-9 which plays a critical role in tumor invasion and migration, and also suppressed invasion of highly metastatic B16-F10 melanoma cells as evidenced by transwell invasion assay. In addition, fucoxanthin diminished the expressions of the cell surface glycoprotein CD44 and CXC chemokine receptor-4 (CXCR4) which play roles in migration, invasion and cancer–endothelial cell adhesion. Fucoxanthin markedly suppressed cell migration in wound healing assay and inhibited actin fiber formation. The adhesion of B16-F10 melanoma cells to the endothelial cells was significantly inhibited by fucoxanthin. Moreover, in experimental lung metastasis in vivo assay, fucoxanthin resulted in significant reduction of tumor nodules. Taken together, we demonstrate, for the first time, that fucoxanthin suppresses metastasis of highly metastatic B16-F10 melanoma cells in vitro and in vivo.  相似文献   

3.
(-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, was shown to have cancer chemopreventive activity. In this study, we examined the antimetastatic effects of EGCG or the combination of EGCG and dacarbazine on B16-F3m melanoma cells in vitro and in vivo. First, the antimetastatic potentials of five green tea catechins were examined by soft agar colony formation assay, and the results show that EGCG was more effective than the other catechins in inhibiting soft agar colony formation. Second, EGCG dose-dependently inhibited B16-F3m cell migration and invasion by in vitro Transwell assay. Third, EGCG significantly inhibited the spread of B16-F3m cells on fibronectin, laminin, collagen, and Matrigel in a dose-dependent manner. In addition, EGCG significantly inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) and the activity of matrix metalloproteinase-9 (MMP-9). In animal experiments, EGCG alone reduced lung metastases in mice bearing B16-F3m melanomas. However, a combination of EGCG and dacarbazine was more effective than EGCG alone in reducing the number of pulmonary metastases and primary tumor growths, and increased the survival rate of melanoma-bearing mice. These results demonstrate that combination treatment with EGCG and dacarbazine strongly inhibits melanoma growth and metastasis, and the action mechanisms of EGCG are associated with the inhibition of cell spreading, cell-extracellular matrix and cell-cell interactions, MMP-9 and FAK activities.  相似文献   

4.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein. RI is constructed almost entirely of leucine rich repeats, which might be involved in unknown biological effects except inhibiting RNase A and angiogenin activities. We previously reported that up-regulating RI inhibited the growth and metastasis of melanoma cells. Epithelial-mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. However, the role of RI in the EMT process remains unknown. Here we hypothesize that RI might inhibit melanoma invasion and metastasis by regulating EMT. We found that over-expression of RI induced up-regulation of E-cadherin, accompanied with decreased expressions of proteins associated with EMT such as N-cadherin, Snail, Slug, Vimentin and Twist both in vitro and in vivo. Furthermore, RI restrained matrix metalloproteinase MMP-2 and MMP-9 secretions in B16 and B16-F10 melanoma cells. In addition, we also found that up-regulation of RI inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. Finally, the effects of RI on phenotype and invasiveness translated into suppressing metastasis by the experimental metastasis models of melanoma with lighter lung weight, a fewer metastasis nodules and a lower incidence rate, with respect to the control groups. Taken together, our data highlight, for the first time, that RI plays a novel role in inhibiting development and progression of murine melanoma cells through regulating EMT. These results suggest that RI could be a therapeutic target protein for melanoma and may be of biological importance.  相似文献   

5.
We have demonstrated previously that kinin-free high molecular weight kininogen, its domain 5 (D5H, Gly402-Lys502), and peptides derived from D5H inhibited vitronectin-mediated migration and invasion of cancer cells in vitro (Kamiyama, F., Maeda, T., Yamane, T., Li, Y. H., Ogikubo, O., Otsuka, T., and Ohkubo, I. (2001) Biochem. Biophys. Res. Commun. 288, 975-980). In this study, we found that the amino acid sequence His-Gly-Lys (HGK) in D5H is the core motif for inhibition of adhesion and invasion of MDA-MB-231 cells in vitro. P-5m (484GHGKHKNK491, Gly484-Lys491), an octapeptide including the HGK motif derived from D5H, and HGK, a tripeptide, inhibited both cell adhesion and invasion in vitro. However, an octapeptide designated P-5m (K487R), in which Lys487 was changed to Arg, did not inhibit either cell adhesion or invasion, and peptides HGR and HGG also had no inhibitory effect. Recombinant GST-D5H expressed in Escherichia coli had a stronger inhibitory effect on cell adhesion and invasion in vitro than did GST-D5H (K487R) in which Lys487 was changed to Arg. Furthermore, P-5m (Gly484-Lys491) peptide clearly suppressed lung metastasis in mice experimentally induced by using B16-F10 cells, but P-5m (G487R) had no effect. These data strongly indicate that both the HGK motif and lysine residue (Lys487) play essential roles in inhibition of cell adhesion and invasion in vitro and in prevention of metastasis of cancer cells in vivo. We tried to identify the HGK motif binding protein on the surface of cancer cells. A 95-kDa surface biotin-labeled membrane protein was specifically detached from GST-D5H by P-5 (His479-Lys493) peptide but not by P-1 (Gly402-Lys420) peptide originating from the N-terminal region of D5H.  相似文献   

6.
Laminin-1, a major basement membrane matrix glycoprotein, enhances adhesion, migration, and metastasis of tumor cells. We have screened 208 overlapping synthetic peptides covering the short and long arms of mouse laminin alpha1 chain for their adhesion activity with B16-F10 mouse melanoma cells. Cell adhesion activity was determined using various amounts of peptides coated on plastic dishes and by measuring cell adhesion on peptide-conjugated Sepharose beads. Nineteen peptides showed B16-F10 cell adhesion activity. Three peptides, designated A-13, -24, and -208, showed the strongest attachment activity in the plate assay, whereas 4 peptides, A-13, -51, -99, and -112, demonstrated the strongest cell adhesion when conjugated to beads. The 19 peptides were tested in vivo for their effect on experimental pulmonary metastasis by B16-F10 cells. Four peptides, A-13, -51, -64, and -119, significantly enhanced metastasis, with A-13 showing the strongest dramatic enhancement. The four metastasis-promoting peptides also stimulated migration of B16-F10 cells in the Boyden chamber assay in vitro with A-13 being the most potent stimulator. In addition, the 4 peptides inhibited laminin-induced cell attachment and migration, which indicates that these four sequences are possible functional B16-F10 cell binding sites in laminin-1. All the four sequences are located on the globular domains of the short arm. Other peptides, including strong adhesion-active peptides, A-24, -99, -112, and a scrambled A-13 peptide, did not stimulate either migration or metastasis. Thus, laminin-1 has multiple active sites in the globular domains of the short arm which promote migration and metastasis of B16-F10 cells.  相似文献   

7.
Albolabrin, a 7.5-kDa cysteine-rich protein isolated from the venom of Trimeresurus albolabris, contains the arginine-glycine-aspartic acid (RGD) cell recognition sequence found in many cell adhesion-promoting extracellular matrix proteins, such as fibronectin and laminin. Albolabrin belongs to a family of RGD-containing peptides, termed disintegrins, recently isolated from the venom of various vipers and discovered to be potent inhibitors of both platelet aggregation and cell-substratum adhesion. Here we report that albolabrin inhibited the attachment of B16-F10 mouse melanoma cells to either fibronectin or laminin absorbed on plastic. When immobilized on plastic, albolabrin promoted B16-F10 melanoma cell attachment; this was inhibited by either RGD-serine (RGDS) or antibodies to integrins, suggesting that albolabrin binds via its RGD amino sequence to integrin receptors expressed on the melanoma cell surface. In an in vivo experimental metastasis system, albolabrin at a concentration of 300-600 nM inhibited C57BL/6 mouse lung colonization by tail vein-injected mouse melanoma cells and was at least 2000 times more active than RGDS in this assay. We propose that albolabrin inhibits tumor cell metastasis by inhibiting integrin-mediated attachment of melanoma cells to RGD-containing components of the extracellular matrix in the mouse lung.  相似文献   

8.
The antimetastatic potential of thujone, a naturally occurring monoterpene, was evaluated. Metastasis was induced in C57BL/6 mice by injecting highly metastatic B16F-10 melanoma cells through the lateral tail vein. Administration of thujone (1 mg·(kg body weight)(-1)), prophylactically and simultaneously with tumor induction, inhibited tumor nodule formation in the lungs by 59.45% and 57.54%, respectively, with an increase in the survival rate (33.67% and 32.16%) of the metastatic tumor bearing animals. These results correlated with biochemical parameters such as lung collagen hydroxyproline, hexosamine and uronic acid contents, serum sialic acid and γ-glutamyl transpeptidase levels, and histopathological analysis. Treatment with thujone downregulated the production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and granulocyte-monocyte colony-stimulating factor. Thujone administration downregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, extracellular signal-regulated kinase (ERK)-1, ERK-2, and vascular endothelial growth factor (VEGF) and also upregulated the expression of nm-23, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 in the lung tissue of metastasis-induced animals. Treatment with thujone inhibited the activity of MMP-2 and MMP-9 in gelatin zymographic analysis. Thujone treatment significantly inhibited the invasion of B16F-10 melanoma cells across the collagen matrix in a Boyden chamber. Thujone also inhibited the adhesion of tumor cells to collagen-coated microtire plate wells and the migration of B16F-10 melanoma cells across a polycarbonate filter in vitro. These results indicate that Thujone can inhibit the lung metastasis of B16F-10 cells through inhibition of tumor cell proliferation, adhesion, and invasion, as well as by regulating expression of MMPs, VEGF, ERK-1, ERK-2, TIMPs, nm23, and levels of proinflammatory cytokines and IL-2 in metastatic animals.  相似文献   

9.
The role of glycoconjugates in cell surface and blood-borne implantation properties of murine metastatic melanoma sublines of low (B16-F1) or high (B 16-F10) potential to colonize lungs was investigated by treating melanoma cells with the antibiotic tunicamycin. This drug prevents glycosylation of glycoproteins by inhibiting the formation of lipid-linked oligosaccharide precursors. The degree of tunicamycin-mediated modifications in glycoproteins was assessed by monitoring the decrease in cell surface sialogalactoproteins by binding of 125I-labeled Ricinus communis agglutinin I. Scanning electron microscopy of tunicamycin-treated B16-F1 and B16-F10 cells showed morphologic changes such as cell rounding and formation of numerous surface blebs. Tunicamycin-treated B16-F1 and B16-F10 cells lost their lung colonization abilities when injected intravenously into C57BL/6 mice, concomitant with lowered rates of adhesion to endothelial cell monolayers, endothelial extracellular matrix (basal lamina), and polyvinyl-immobilized fibronectin in vitro, suggesting that this drug inhibits experimental metastasis by modifying the surface glycoproteins involved in determining the adhesive properties of malignant cells.  相似文献   

10.
Laminin-1, a major basement membrane matrix glycoprotein, enhances adhesion, migration, and metastasis of tumor cells. We have screened 208 overlapping synthetic peptides covering the short and long arms of mouse laminin α1 chain for their adhesion activity with B16-F10 mouse melanoma cells. Cell adhesion activity was determined using various amounts of peptides coated on plastic dishes and by measuring cell adhesion on peptide-conjugated Sepharose beads. Nineteen peptides showed B16-F10 cell adhesion activity. Three peptides, designated A-13, -24, and -208, showed the strongest attachment activity in the plate assay, whereas 4 peptides, A-13, -51, -99, and -112, demonstrated the strongest cell adhesion when conjugated to beads. The 19 peptides were tested in vivo for their effect on experimental pulmonary metastasis by B16–F10 cells. Four peptides, A-13, -51, -64, and -119, significantly enhanced metastasis, with A-13 showing the strongest dramatic enhancement. The four metastasis-promoting peptides also stimulated migration of B16-F10 cells in the Boyden chamber assay in vitro with A-13 being the most potent stimulator. In addition, the 4 peptides inhibited laminin-induced cell attachment and migration, which indicates that these four sequences are possible functional B16-F10 cell binding sites in laminin-1. All the four sequences are located on the globular domains of the short arm. Other peptides, including strong adhesion-active peptides, A-24, -99, -112, and a scrambled A-13 peptide, did not stimulate either migration or metastasis. Thus, laminin-1 has multiple active sites in the globular domains of the short arm which promote migration and metastasis of B16-F10 cells.  相似文献   

11.
Macrosphelide B (MSB), a 16-membered macrolide from Microsphaeropsis sp. FO-5050, inhibits adhesion of sialyl Lewis(x) (sLe(x))-expressing HL-60 cells to LPS-activated (E-selectin-expressing) human umbilical vein endothelial cells (HUVECs) in vitro. This study examines MSB effects on metastasis of B16/BL6 mouse melanoma cells (B16/BL6 cells) and L5178Y-ML mouse lymphoma cells in vivo and analyzes the MSB antimetastatic activity mechanism. When administered MSB at 20 mg/kg/day, lung metastatic nodules of B16/BL6 cells were significantly decreased (T/C = 45%). However, no inhibition of metastasis of L5178Y-ML cells to the spleen and liver was observed. Flow cytometry analysis showed that B16/BL6 cells expressed high levels of sLe(x) antigen, whereas expression on L5178Y-ML cells was low. Under in vitro conditions, B16/BL6 cells demonstrated a greater degree of adhesion to LPS-activated HUVECs than L5178Y-ML cells, but adhesion was significantly inhibited by MSB and sLe(x) antibody. Combined therapy of MSB and cisplatin (CDDP) induced remarkable lung metastasis inhibition without adverse effects of CDDP to the host. All these findings suggest that MSB suppresses lung metastasis of B16/BL6 cells by inhibiting cell adhesion to endothelial cells through the sLe(x) molecule.  相似文献   

12.
Tyroserleutide (YSL) is a type of active, low molecular weight polypeptide, comprised of three amino acids, which has antitumor effects. YSL has various advantages over the other bioactive peptides such as its low molecular weight, simple construction, nonimmunogenicity, specificity, few side effects, and ease of synthesis. However, the biological activities contributing to it’s antitumor effects are not yet known. We studied the effects of YSL on the in vitro cytotoxic activity of BALB/c mice peritoneal macrophages (PEMφ) against the target tumor cell lines BEL-7402 and B16-F10. We also measured the concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and nitric oxide (NO) produced by YSL-activated Mφ, and we determined the concentrations of IL-1β and NO secreted by YSL-activated murine macrophage RAW264.7 cells. YSL activated Mφ in vitro, inhibited BEL-7402 proliferation, enhanced PEMφ antitumor effects, and stimulated IL-1β, TNF-α, and NO production by RAW264.7 cells. These data suggest that YSL activates the monocyte–macrophage system, which enhances Mφ antitumor effects against BEL-7402 and B16-F10 cells and stimulates the secretion by Mφ of cytotoxic effectors such as IL-1β, TNF-α, and NO.  相似文献   

13.
Acurhagin-C, a Glu–Cys–Asp (ECD)-disintegrin from Agkistrodon acutus venom, has been reported as an endothelial apoptosis inducer, previously. Here we further evaluate its potential applications in cancer therapy. In vitro assays indicated that acurhagin-C not only may influence the cell viability at higher concentration, but also can potently and dose-dependently decrease cell proliferation in murine B16-F10 melanoma. Otherwise, it also had a dose-dependent inhibition on B16-F10 cell adhesion to extracellular matrices, collagen VI, gelatin B and fibronectin, as well as disturbed transendothelial migration of B16-F10 cell. Morphological study found that acurhagin-C dramatically affected B16-F10 cell adhesion to immobilized fibronectin, leading to the formation of multicellular aggregates with rounded shape. Detected by flow cytometry, acurhagin-C was able to induce B16-F10 cell apoptosis and alter cell cycle distribution through its interactions with integrins αv/α5, and thereafter initiation the apoptotic pathways of caspase-8/-9. Furthermore, acurhagin-C could synergistically enhance the anti-proliferative activity of methotrexate in B16-F10 cells and human melanoma SK-MEL-1 cells, without diminishing the growth of human epidermal melanocytes. Taken together, acurhagin-C proved to be a potent inhibitor of integrin-based functions in melanoma cells by activating the complex apoptotic pathways.  相似文献   

14.
Antimetastatic activity of Sulforaphane   总被引:4,自引:0,他引:4  
Thejass P  Kuttan G 《Life sciences》2006,78(26):3043-3050
The effect of Sulforaphane on the inhibition of lung metastasis induced by B16F-10 melanoma cells was studied in C57BL/6 mice by three different modalities of administration-simultaneous, prophylactic and after tumour developed. Of this simultaneous mode of Sulforaphane administration was found to be most effective. There was 95.5% inhibition of lung tumour nodule formation and 94.06% increase in the life span of metastatic tumour bearing animals. Highly elevated levels of lung hydroxyproline, lung uronic acid, lung hexosamine, serum sialic acid and serum gamma-glutamyl transpeptidase (GGT) in the metastatic control animals was found to be significantly lowered in the Sulforaphane treated animals. Histopathological analysis of lung tissues also correlated with these results. In the in vitro system Sulforaphane showed a significant inhibition in the invasion of B16F-10 melanoma cells across the collagen matrix. (3)H-thymidine proliferation assay showed that Sulforaphane could inhibit the proliferation of B16F-10 melanoma cells in vitro. Gelatin zymographic analysis showed that Sulforaphane could inhibit the activation of matrix metalloproteinases. These findings suggest that Sulforaphane reduced the invasion of B16F-10 melanoma cells by the inhibition of activation of matrix metalloproteinases, thereby inhibiting lung metastasis.  相似文献   

15.
Vascular endothelial cells synthesize an extracellular matrix or basal lamina composed of collagens, proteoglycans and glycoproteins such as fibronectin (FN). Using affinity-purified anti-FN, we have examined the role of FN in adherence of metastatic B16 melanoma cells to endothelial cell monolayers which lack FN on apical cell surfaces and to their basal lamina which contains FN. B16 melanoma cells, which do not contain significant amounts of FN, attached at much higher rates to endothelial basal lamina and polyvinyl-immobilized FN compared with intact endothelial cell monolayers. Anti-FN failed to inhibit attachment of melanoma sublines of low (B16-F1) or high (B16-F10) metastatic potential to intact endothelial cell monolayers, inhibited slightly B16 cell attachment to basal lamina and completely abolished attachment of B16 cells to polyvinyl-immobilized FN. The antibiotic tunicamycin which inhibits glycosylation of B16 cell surface glycoproteins and blocks experimental metastasis [18] inhibited B16 attachment to endothelial cells, basal lamina and immobilized FN. The results suggest that FN mediates, only in part, the adhesion of B16 melanoma cells to basal lamina through glycoprotein receptors on B16 cells.  相似文献   

16.
Accumulating evidence indicates that the acidic microenvironments critically influence malignant behaviors of cancer including invasiveness, metastasis, and chemoresistance. Because the vacuolar-type H(+)-ATPase (V-ATPase) has been shown to cause extracellular acidification by pumping protons, we studied the role of V-ATPase in distant metastasis. Real-time PCR analysis revealed that the high-metastatic B16-F10 melanoma cells strongly expressed the a3 isoform V-ATPase compared to the low-metastatic B16 parental cells. Consistent with this, B16-F10 cells created acidic environments in lung metastases by acridine orange staining and strong a3 V-ATPase expression in bone metastases by immunohistochemistry. Immunocytochemical analysis showed B16-F10 cells expressed a3 V-ATPase not only in cytoplasm but also plasma membrane, whereas B16 parental cells exhibited its expression only in cytoplasm. Of note, knockdown of a3 V-ATPase suppressed invasiveness and migration with reduced MMP-2 and MMP-9 expression in B16-F10 cells and significantly decreased lung and bone metastases, despite that tumor growth was not altered. Importantly, administration of a specific V-ATPase a3 inhibitor FR167356 reduced bone metastasis of B16-F10 cells. These results suggest that a3 V-ATPase promotes distant metastasis of B16-F10 cells by creating acidic environments via proton secretion. Our results also suggest that inhibition of the development of cancer-associated acidic environments by suppressing a3 V-ATPase could be a novel therapeutic approach for the treatment of cancer metastasis.  相似文献   

17.
Gelatinases/type IV collagenases have been shown to be involved in tumor invasion and metastasis. In this study, we examined the effect of culture medium pH on the secretion of the gelatinases from mouse B16 melanoma cell lines and human tumor cell lines using zymography analysis. The highly metastatic clone F10 of B16 melanoma did not secrete any gelatinase in neutral culture media (pH 7.1-7.3), whereas it secreted a high level of a 103-kDa gelatinase in an initial pH range of 5.4-6.1. The addition of an excess amount of glucose into a neutral culture medium also induced the gelatinase secretion from the cells by decreasing the medium pH during incubation. The extent of the acid-induced gelatinase secretion by the B16 melanoma cell lines was in the order of BL6 greater than F10 greater than F1 much greater than the parent B16 line, in good agreement with the order of their metastatic potentials. Two human cell lines (A549 and HT1080) secreted a higher level of a 90-kDa gelatinase at pH 6.8 compared with pH 7.3. The acid-induced gelatinase secretion from B16-F10 cells was blocked by cycloheximide, indicating that the enzyme induction was due to de novo synthesis. When in vitro tumor cell invasion was assayed in Boyden chambers, B16-F10 cells incubated in an acidic medium exerted a more active migration through type IV collagen gel than those in a neutral medium. These results suggest that the acidic environment formed around tumor tissues may be an important factor in invasion and metastasis of some types of tumors.  相似文献   

18.
The 40% ethanol eluent of the fraction of hot-water extract from adzuki beans (EtEx.40) adsorbed onto DIAION HP-20 resin has many biological activities, for example, antioxidant, antitumorigenesis, and intestinal alpha-glucosidase suppressing activities. This study examined the inhibitory effect of EtEx.40 on experimental lung metastasis and the invasion of B16-BL6 melanoma cells. EtEx.40 was found significantly to reduce the number of tumor colonies. It also inhibited the adhesion and migration of B16-BL6 melanoma cells into extracellular matrix components and their invasion into reconstituted basement membrane (matrigel) without affecting cell proliferation in vitro. These in vivo data suggest that EtEx.40 possesses a strong antimetastatic ability, which might be a lead compound in functional food development.  相似文献   

19.
We previously described an inverse correlation between galectin-9 (Gal-9) expression and metastasis in patients with malignant melanoma and breast cancer. This study verified the ability of Gal-9 to inhibit lung metastasis in experimental mouse models using highly metastatic B16F10 melanoma and Colon26 colon cancer cells. B16F10 cells transfected with a secreted form of Gal-9 lost their metastatic potential. Intravenous Gal-9 administration reduced the number of metastases of both B16F10 and Colon26 cells in the lung, indicating that secreted Gal-9 suppresses metastasis. Analysis of adhesive molecule expression revealed that B16F10 cells highly express CD44, integrin alpha1, alpha 4, alpha V, and beta1, and that Colon26 cells express CD44, integrin alpha2, alpha 5, alpha V, and beta1, suggesting that Gal-9 may inhibit the adhesion of tumor cells to vascular endothelium and the extracellular matrix (ECM) by binding to such adhesive molecules. Indeed, Gal-9 suppressed the binding of hyaluronic acid to CD44 on both B16F10 and Colon26 cells, and also suppressed the binding of vascular cell adhesion molecule-1 to very late antigen-4 on B16F10 cells. Furthermore, Gal-9 inhibited the binding of tumor cells to ECM components, resulting in the suppression of tumor cell migration. The present results suggest that Gal-9 suppresses both attachment and invasion of tumor cells by inhibiting the binding of adhesive molecules on tumor cells to ligands on vascular endothelium and ECM.  相似文献   

20.
人核糖核酸酶抑制因子(human ribonuclease inhibitor, RI)是一种细胞质中分子质量为50 ku的酸性糖蛋白.RI能抑制核糖核酸酶A(RNase A)的活性, RNase A与血管生成因子(angiogenin,Ang)的氨基酸有着高度保守的同源序列.Ang是RNase A超家族的一员,RI通过与RNase A和Ang的紧密结合而抑制其活性.血管生成及新血管的形成, 是肿瘤发生和转移的必要条件.所以抗血管生成将是一种很有希望的对抑制肿瘤生长和转移的有效方法.实验显示RI能有效地抑制肿瘤诱导血管的生成.RI由含有许多亮氨酸重复序列的多肽组成.含有这样重复序列的100多种蛋白质显示了广泛的功能,包括细胞周期调节,DNA修复,对细胞外基质相互作用以及抑制酶活性等.RI被认为是胚胎发育,创伤愈合及肿瘤发生中新血管形成的一种调节因子.RI定位于染色体的11p15.5,与ras基因邻近,在肿瘤病人中经常存在染色体11p15.5部位的变异和异常.RI可能与细胞的生长和分化有关, 因此,RI 可能还具有尚未知的生物学作用.为了进一步了解RI的潜在功能以及探讨RI与肿瘤浸润、转移的关系, 将人的核糖核酸酶抑制因子基因的cDNA通过逆转录包装细胞PA317,并转染到B16小鼠黑色瘤细胞中, 用转染空载体和未转染的B16细胞作为对照.通过PCR, RT-PCR, 蛋白质免疫印迹, 免疫荧光分析鉴定,获得稳定表达人核糖核酸酶抑制因子的细胞株.结果显示, 转染的RI基因在体外能显著地抑制细胞增殖和细胞迁移,增加了细胞的粘附以及改善细胞的恶性形态,B16,B16 pLNCX,B16 pLNCX-RI 3种细胞的倍增时间分别为(24.98±0.16) h, (25.62±0.28) h, (32.64±1.11) h.与对照组相比,转RI的细胞粘附率增加17.8%和19.5%而迁移降低了61.4%和60%.转RI的细胞比对照组细胞较平展,核仁和分裂相较少,胞质嗜碱性减弱,提示细胞增殖活性降低和恶性表型的改善. 将3种B16细胞静脉注射到C57BL/6小鼠中, 结果表明, 转染RI基因的实验组显著地抑制了肿瘤的转移, 与两个对照组相比,荷瘤小鼠有更长的存活时间, 少得多的转移节结, 更低的肿瘤血管密度和肺重量.结果显示,RI的表达可能与黑色瘤的转移有关, 提示RI能显著地抑制肿瘤的转移,可能由于其与抑制血管作用,增加细胞粘附,降低细胞迁移及增殖有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号