首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
Ferredoxin-NADP+ oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP+-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP+-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.  相似文献   

2.
Mary E. Rumpho  Fred D. Sack 《Planta》1989,179(2):137-147
The usefulness of 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) for in-situ studies of the chloroplast phosphate translocator was evaluated by fluorescence microscopy and radiolabeling of spinach (Spinacia oleracea L.) (C3 plant) and maize (Zea mays L.) (C4 plant) chloroplasts. In maize mesophyll and bundle-sheath chloroplasts and in spinach chloroplasts that were either intact, broken or swollen, DIDS fluorescence was only associated with the chloroplast envelope. Intact chloroplasts often had fluorescent patches corresponding to concave regions of the chloroplast which we assume to be regions enriched in DIDS-binding sites.Incubation of intact or broken spinach chloroplasts or maize mesophyll chloroplasts with [3H2]DIDS resulted in the labeling of a single polypeptide (relative molecular mass, Mr, 30 kDa) in the envelope fraction, in each case. Label in the stromal fraction was not detected when intact chloroplasts were incubated with [3H2]DIDS. However, when broken chloroplasts were incubated with [3H2]DIDS, several polypeptides of various molecular masses were labeled, but not the 30×31-kDa polypeptide. In thylakoid fractions from both broken and intact chloroplasts, a single 30×31-kDa polypeptide was labeled inconsistently. When a mixture of intact maize mesophyll and bundle-sheath chloroplasts was labeled with [3H2]DIDS, extracts of whole chloroplasts displayed radioactivity only in the 30×31-kDa band.We conclude that DIDS is a valuable probe for the in-situ identification and characterization of the 30-kDa protein — the presumptive phosphate translocator — in C3 and C4 chloroplasts since DIDS (1) does not penetrate the inner membrane of the envelope of intact chloroplasts and, therefore, (2) does not bind internal sites in intact chloroplasts, and (3) only binds the 30-kDa protein in the inner membrane of the envelope.Abbreviations CBB Coomassie brilliant blue - DIC differential interference contrast optics - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - [3H2]DIDS 1,2-ditritio-1,2-(2,2-disulfo-4,4-diisothiocyano)diphenylethane - kDa kilodalton - Mr relative molecular mass - PGA 3-phosphoglycerate - Pitranslocator phosphate translocator - SDS sodium dodecyl sulfate  相似文献   

3.
Using an 5-AvaII fragment of the spinach (Spinacia oleracea L.) phosphate translocator cDNA as a probe for a hybridization screening of a pea (Pisum sativum L.) cDNA library we have cloned and sequenced a cDNA clone coding for the phosphate translocator precursor protein from pea chloroplasts. The full-length cDNA clone comprises 42 base pairs (bp) at the 5-non-coding region, a 1206-bp coding region corresponding to a polypeptide of 402 amino-acid residues (relative molecular mass 43 671) and 244 bp at the non-coding 3-region. Determination of the N-terminal sequence of the phosphate translocator from both pea and spinach chloroplasts revealed that the transit peptides consist of 72 and 80 amino-acid residues, respectively. These transit peptides are different from those of other chloroplastic transit peptides in that they both contain an amphiphilic -helix which is located either in close proximity to the processing site in pea or at the N-terminus in spinach. The mature proteins from pea and spinach both contain about 87% identical amino-acid residues and about seven putative membrane-spanning -helices. Some of these -helices have an amphiphilic character and might serve to form a hydrophilic translocation channel through the membrane. The in-vitro synthesized pea precursor protein is directed to the chloroplast and inserted into the chloroplast envelope membrane.Abbreviations bp base pairs - kDa kilodaltons - Mr relative moleculas mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We wish to thank Dr D. Pappin and R. Jakes (AFRC Sequencing Laboratory, Department of Biochemistry, University of Leeds, UK) for performing the N-terminal sequence determinations and are greatful to Dr J. S. Gantt (Botany Department, University of Georgia, Athens, USA) for a pea leaf cDNA library and to Professor J. C. Gray (University of Cambridge, Department of Botany, Cambridge, UK) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Science and Engineering Research Council and the Royal Society. D.L.W. was the recipient of the Royal Society Rosenheim research fellowship and K.F. was supported by a fellowship from the Studienstiftung des deutschen Volkes.  相似文献   

4.
Vacuoles were isolated from primary leaves of barley (Hordeum vulgare L.) by mechanical breakage of protoplasts, and their polypeptide composition analyzed by two-dimensional gel electrophoresis. Vacuoplasts which consist of the vacuole, a portion of the plasmalemma and of the cytoplasma were prepared from protoplasts by ultracentrifugation. By comparing the vacuolar polypeptide pattern with polypeptide patterns of isolated chloroplasts and of vacuoplasts, vacuolar polypeptides could clearly be distinguished from polypeptides derived from cross-contaminating cell compartments. At least 14 polypeptides of apparent molecular mass between 12 and 76 kilodaltons and an isoelectric point between 4.5 and 7.6 could be attributed to the tonoplast fraction of the vacuole, and 35 polypeptides to the soluble fraction of the vacuole. Several lectins with different specificity were employed to characterize the degree and nature of glycosylation of vacuolar polypeptides. Concanavalin A bound to a large number of polypeptides. Three out of the 14 tonoplast polypeptides exhibited detectable carbohydrate moieties and almost two-thirds of the surveyed soluble polypeptides were glycosylated.Abbreviations IEF isoelectric focussing - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

5.
When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of Spirillum strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 mol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.Abbreviations DNRA dissimilatory nitrate reduction to ammonia - EPR electron paramagnetic resonance - PAGE polyacrylamide gel electrophoresis - NaPi sodium phosphate - SDS sodium dodecylsulfate  相似文献   

6.
-Glucuronidase from callus cultures of Scutellaria baicalensis Georgi was purified to apparent homogeneity by fractionated ammonium-sulfate precipitation and chromatography on diethylaminoethyl-cellulose, hydroxylapatite and baicalin-conjugated Sepharose 6B. A 650-fold purification was obtained by this purification system. When subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified protein migrated as a single band with a molecular mass of 55 kDa. We determined that the native enzyme has a molecular mass of 230 kDa using gel-filtration chromatography. These results suggested that the enzyme exists as a homotetramer composed of four identical 55-kDa subunits. The enzyme showed a broad pH optimum between 7.0 and 8.0. The K m values were 9 M, 10 M, 30 M and 40 M for luteolin 3 -O--d-glucuronide, baicalin, wogonin 7-O--d-glucoronide and oroxlin 7-O--d-glucuronide, respectively. The enzyme was most active with flavone 7-O--d-glucuronides.Abbreviations BA N6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - pI isoelectric point - R t retention time  相似文献   

7.
The -xylosidase which is involved in the postgerminative mobilisation of xyloglucan in nasturtium seed cotyledons has now been purified to apparent homogeneity by a facile procedure involving lectin affinity chromatography. The purified enzyme, a glycoprotein, moved as a single band (apparent molecular weight 85000) on sodium dodecyl sulphate-gel electrophoresis, whilst isoelectric focusing gave a number of enzymatically active protein bands spanning the range pI = 5.0 to 7.1 (maximum activity at pI = 6.1). The enzyme did not hydrolyse the simple -xylosides p-nitrophenyl--d-xylopyranoside and woprimeverose (-d-Xyl(16)-d-Glc), or polymeric tamarind-seed xyloglucan. It released xylose from a complex mixture of oligosaccharides produced by exhaustive hydrolysis of tamarind seed xyloglucan using the xyloglucan-specific endo-(14)--d-glucanase from germinated nasturtium seeds (M. Edwards et al. 1986, J. Biol. Chem., 261. 9489–9494). The three xyloglucan oligosaccharides of lowest molecular size were purified from this mixture and were shown by 1H-nuclear magnetic resonance (1H-NMR) and enzymatic analysis to have the structures:Abbreviations Con A Concanavalin A - DEAE diethylaminoethyl - Gal galactose - Glc glucose - HPLC high-performance liquid chromatography - M r apparent molecular mass - NMR nuclear magnetic resonance - pI isoelectric point - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - Xyl xylose Much of the work reported in this paper was carried out with the aid of the European Community's Science Stimulation Action (Contract No. ST2P-0250-UK), and we wish to record our appreciation of this support.  相似文献   

8.
-Amylases from the thermophilic fungus, Thermomyces lanuginosus ATCC 34626 (wild and mutant strains), were purified to homogeneity by a simple procedure including, consecutively, precipitation with ice-cold 2-propanol, anion-exchange and molecular-sieve chromatographic methods. The molecular masses of the purified -amylases (both with pI values of 3.0) were 58 kDa by SDS-PAGE. The optimal pH of -amylase activity was 5.0 for the wild enzyme and 4.5 for the mutant one. 1-Cyclohexyl-3-(2-morpholinyl-4-ethyl)-carbodiimide (40–100 mM) and N-bromosuccinimide (0.1–1 mM) inhibited the enzymes, suggesting the involvement of carboxylic groups and tryptophan residues in the catalytic process.  相似文献   

9.
-Amylase from a still culture filtrate of Tricholoma matsutake, an ectomycorrhizal fungus, was isolated and characterized. The enzyme was purified to a homogeneous preparation with Toyopearl-DEAE, gel filtration, and Mono Q column chromatography. The -amylase was highly purified (3580 fold) with a recovery of 10.5% and showed a single protein band by SDS-PAGE. The enzyme was most active at pH 5.0–6.0 toward soluble starch and stable within the broad pH range 4.0–10.0. This -amylase was a relatively thermostable enzyme (optimum temperature, 60°C; thermal stability, 50°C). The molecular mass was 34kDa by size-exclusion chromatography and 46kDa by SDS-PAGE. This enzyme was not inhibited by the Hg2+ ion. Measurement of viscosity and TLC and HPLC analysis of the hydrolysates obtained from amylose showed that the amylase from T. matsutake is an endo-type (-amylase). Substrate specificity was tested using amylose with different polysaccharides. This -amylase readily hydrolyzed the -1,4 glucoside bond in soluble starch and amylose A (MW, 2900), but did not hydrolyze the -1,6 bond and cyclic polysaccharides such as - and -cyclodextrin.  相似文献   

10.
With primers designed for the conserved region of the -butyrolactone autoregulator receptor proteins from Streptomyces species, PCR using the Streptomyces clavuligerus genome DNA as a template gave a clear band of 100 bp, the sequence of which revealed high similarity to the expected region of a receptor gene. By Southern blot and colony hybridization with the 100-bp insert as a probe, plasmid pSCA, harboring a 4.2 kb-SalI fragment, was obtained. Sequence analysis on the insert revealed a 702-bp ORF encoding a protein with a moderate similarity (identity, 33–43%; similarity, 51–62%) to known -butyrolactone autoregulator receptor proteins from Streptomyces sp. The ORF was named scaR (S. clavuligerus autoregulator receptor). The scaR/pET-3d plasmid was constructed for overexpression of the recombinant ScaR protein (rScaR) in Escherichia coli, and the rScaR protein was purified to homogeneity by DEAE-ion-exchange HPLC. The molecular mass of the purified rScaR protein was determined to be 27 kDa as determined by SDS-PAGE, and 54 kDa by gel filtration HPLC under nondenatured conditions at a low protein concentration, indicating that the majority of the native ScaR is present in the form of a dimer, although rScaR tended to aggregate into a higher molecular form of 230 kDa at a high protein concentration. A binding assay with tritium-labeled autoregulators indicated that IM-2 type compounds with a long C2 side chain were the most effective ligands for rScaR, demonstrating for the first time that the -lactam producer S. clavuligerus contains a gene for the -butyrolactone autoregulator receptor.  相似文献   

11.
Chickpea (Cicer arietinum L.) cell-suspension cultures were used to isolate one -1,3-glucanase (EC 3.2.1.29) and two chitinases (EC 3.2.1.14). The -1,3-glucanase (Mr = 36 kDa) and one of the chitinases (Mr = 32 kDa) belong to class I hydrolases with basic isoelectric points (10.5 and 8.5, respectively) and were located intracellularly. The basic chitinase (BC) was also found in the culture medium. The second chitinase (Mr = 28 kDa), with an acidic isoelectric point of 5.7, showed homology to N-terminal sequences of class III chitinases and represented the main protein accumulating in the culture medium. Polyclonal antibodies raised against the basic -1,3-glucanase (BG) and the acidic chitinase (AC) were shown to be monospecific. The anti-AC antiserum failed to recognize the BC on immune blots, confirming the structural diversity between class I and class III chitinases. Neither chitinase exhibitied lysozyme activity. All hydrolases were endo in action on appropriate substrates. The BC inhibited the hyphal growth of several test fungi, whereas the AC failed to show any inhibitory activity. Expression of BG activity appeared to be regulated by auxin in the cell culture and in the intact plant. In contrast, the expression of neither chitinase was apparently influenced by auxin, indicating a differential hormonal regulation of -1,3-glucanase and chitinase activities in chickpea. After elicitation of cell cultures or infection of chickpea plants with Ascochyta rabiei, both system were found to have hydrolase patterns which were qualitatively and quantitatively comparable. Finally, resitant (ILC 3279) and susceptible (ILC 1929) cultivars of chickpea showed no appreciable differences with regard to the time and amount of hydrolase accumulation after inoculation with spores of A. rabiei.Abbreviations AC acidic chitinase - BC basic chitinase - BG = basic -1,3-glucanase - CM-Chitin-RBV carboxymethylated-chitin-remazol brilliant violet - 2,4-D 2,4-dichlorophenoxyacetic acid - ILC international legume chickpea - Mr relative molecular mass - pI isoelectric point - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis We thank the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for financial support and ICARDA, Aleppo, Syria, for the provision of seed material. We also thank Dr. B. Fritig (Institut de Biologie Moléculaire des Plantes, CNRS, Straßbourg, France) and Dr. F. Meins, Jr. (Friedrich-Miescher-Institut, Basel, Switzerland) for their kind gifts of antibodies.  相似文献   

12.
An acyltransferase hydroxycinnamoyl-Coenzyme A: -hydroxypalmitic acid O-hydroxycinnamoyltransferase (HHT; EC 2.3.1.-), which transfers hydroxycinnamic acids from hydroxycinnamoyl-CoA thioesters to several hydroxylated fatty acid derivatives, was characterized from tobacco (Nicotiana tabacum L. cv. Xanthi nc) cell-suspension cultures. It exhibited the same properties as the enzyme previously detected in wound-healing potato tuber discs (Lotfy et al., 1994, Phytochemistry 35: 1419–1424), and especially a marked specificity for -hydroxypalmitic acid and feruloyl-CoA. It was purified 300-fold to near homogeneity from late logarithmic-phase cell suspensions. The apparent molecular mass of the native protein was 55 kDa and its isoelectric point, estimated by electrofocusing, was 4.6. The purified enzyme conjugated ferulic acid to -hydroxypalmitic acid and to 1-tetradecanol, its main lipidic substrates, suggesting that the same enzyme probably synthesizes the different esters of 1-alkanols and of -hydroxy fatty acids which are formed in vitro.Abbreviations ABA abscisic acid - IEF isoelectric focusing - HHT hydroxycinnamoyl-Coenzyme A: -hydroxypalmitic acid O-hydroxycinnamoyltransferase - pI isoelectric point  相似文献   

13.
-Mannanase produced by Bacillus sp. W-2, isolated from decayed commercial konjak cake, was purified from the culture supernatant by (NH4)2 SO4 precipitation, adsorption to konjak gel, and column chromatography with DEAE-cellulose, Sephadex G-100 and Sephacryl S-200. Its molecular size was estimated by SDS-PAGE as 40 kDa, and by gel filtration as 36 kDa. The enzyme was most active at pH 7 and 70°C and was stable for at least 1 h between pH 5 and 10 and below 60°C. Its activity was completely inhibited by Hg2+. The enzyme hydrolysed galactomannan better than glucomannan and mainly produced mannose and mannobiose.The authors are with the Department of Bioproductive Science, Faculty of Agriculture, Utsunomiya University. Utsunomiya, Tochigi 321, Japan  相似文献   

14.
Soybean (Glycine max (L.) Merr.) seeds contain the storage protein -conglycinin, encoded by a multigene family. -Conglycinin consists of three subunits; , , and . A genomic clone for a -subunit of -conglycinin has been characterized by restriction-enzyme mapping and hybrid selected in-vitro translation followed by immunoprecipitation. In order to determine the developmental regulation of this -subunit gene, its expression was studied in seeds of transgenic petunia (Petunia hybrida) and tobacco (Nicotiana tabacum L.) plants. The -subunit expressed in seeds of petunia and tobacco was recognized by anti--conglycinin serum at a relative molecular mass of 53 000, equivalent to that of the native protein. Separation of the petunia-seed proteins by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed that multiple isoelectric forms of the -subunit were produced. There was approximately a twofold variation in the accumulation of the -subunit protein in the mature seeds of transgenic petunia plants, each containing a single -subunit gene. However, the level of protein accumulation in mature seeds and the amount of -subunit mRNA in developing seeds was not correlated. Accumulation of the -subunit protein in transgenic seeds was less than the -subunit protein that accumulated in transgenic petunia seeds containing a single -subunit gene and less than the amount of the -subunit in mature soybean seeds which contain 8–13 -subunit genes. In transgenic tobacco plants, the accumulation of the -subunit protein in seeds was generally well correlated with the number of genes that were incorporated in the different transformants.Abbreviations kb kilobase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

15.
A new gene encoding an -amylase has been cloned, sequenced and expressed in E. coli from an alkaliphilic Pseudomonas sp. KFCC10818. The structural gene is 1356 base pairs long and encodes a protein of 452 amino acids. The recombinant -amylase has been purified and biochemically characterized. Molecular mass of the protein deduced from SDS-PAGE was 50 kDa. The enzyme showed an activity optimum at pH 8 and at 40 °C with complete stability at pH 13 for 3 h. The enzyme released maltose and maltotriose on hydrolysis of soluble starch. Amylose was hydrolysed over 5 times faster than amylopectin by the enzyme while the hydrolysis of cyclodextrin or pullulan was negligible.  相似文献   

16.
A novel -keto ester reductase (KER) was purified to homogeneity from recombinant Escherichia coli (pTrcKER) cells, which efficiently expressed the ker gene cloned from Penicillium citrinum IFO4631. The enzyme was monomeric and had a molecular mass of 37 kDa. It catalyzed the reduction of some -keto esters, especially alkyl 4-halo-3-oxobutyrates. However, it did not catalyze the reverse reaction, the dehydrogenation of alkyl 4-halo-3-hydroxybutyrates and other alcohols. The enzyme required NADPH as a cofactor and showed no activity with NADH. Therefore, it was defined as a NADPH-dependent aldo–keto reductase (AKR3E1), belonging to the AKR superfamily. The enzyme stereospecifically produced methyl (S)-4-bromo-3-hydroxybutyrate from its keto derivative with high stereospecificity (97.9% enantiomer excess). E. coli cells expressing KER and glucose dehydrogenase in the water/butyl acetate two-phase system achieved a high productivity of (S)-4-bromo-3-hydroxybutyrate (277 mM, 54 mg/ml) in the organic solvent layer.  相似文献   

17.
Summary An enzyme with -galactosidase activity and an apparent molecular weight of 82 kDa was purified from culture medium of Aspergillus niger. The N-terminal amino acid sequence of the purified protein shows similarity to the N-terminal amino acid sequence of -galactosidases from several other organisms. Oligonucleotides, based on the N-terminal amino acid sequence, were used as probes to clone the corresponding gene from a EMBL3 gene library of A. niger. The cloned gene (aglA) was shown to be functional by demonstrating that the 82 kDa -galactosidase is absent from a strain with a disruption of the agIA gene, and is over-produced in strains containing multiple copies of the aglA gene. Enzyme activity assays revealed that the 82 kDa -galactosidase A represents a minor extracellular -galactosidase activity in A. niger.  相似文献   

18.
Polyclonal antiserum raised against the native PG1 isoform of tomato fruit (Lycopersicon esculentum Mill.) polygalacturonase [poly(1,4--d-galacturonide) glycanohydrolase, EC 3.2.1.15] bound to each of the subunits of the protein and also to a range of other fruit proteins. Affinity purification was used to remove antibody molecules that bound to the native form of the PG2 isoform. The resulting serum bound to native PG1, denatured PG2 and -subunits of PG1 but not to native PG2 or other fruit proteins. This anti-PG1 serum was used to monitor the occurrence of the PG1 -subunit and PG2 in detergent extracts of tomato tissues. The -subunit polypeptide was detected in pericarp but not locule tissue of fruit, including fruit of the rin and nor mutants. It increased in amount in the pericarp tissues from an early stage to the mature green stage, clearly prior to any appreciable accumulation of the PG2 subunit. The -subunit polypeptide was not detected in stem or leaf tissues. A PG2-specific antiserum was used to study the interaction of PG2 with the isolated -subunit. The PG2 isoform was bound to the -subunit over a wide range of salt concentrations and pH; the interaction was independent of the presence of reducing agents. It is concluded that strong non-covalent forces are involved in the interaction. The results are consistent with a model in which the -subunit is positioned in the cell wall structure and provides a specific binding site for the active PG2 subunit when this is synthesised during ripening.Abbreviations B breaker - MG mature green - Mr relative molecular mass - nor non-ripening mutant - PAGE polyacrylamide gel electrophoresis - PG polygalacturonase - rin ripening inhibitor mutant - SDS sodium dodecyl sulphate  相似文献   

19.
The biosynthesis of polyhydroxyalkanoates (PHAs) was studied, for the first time, in the thermophilic bacterium Thermus thermophilus. Using sodium gluconate (1.5% w/v) or sodium octanoate (10 mM) as sole carbon sources, PHAs were accumulated to approximately 35 or 40% of the cellular dry weight, respectively. Gas chromatographic analysis of PHA isolated from gluconate-grown cells showed that the polyester (Mw: 480,000 g.mol–1) was mainly composed of 3-hydroxydecanoate (3HD) with a molar fraction of 64%. In addition, 3-hydroxyoctanoate (3HO), 3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB) occurred as constituents. In contrast, the polyester (Mw: 391,000 g mol–1) from octanoate-grown cells was composed of 24.5 mol% 3HB, 5.4 mol% 3HO, 12.3 mol% 3-hydroxynonanoate (3HN), 14.6 mol% 3HD, 35.4 mol% 3-hydroxyundecanoate (3HUD) and 7.8 mol% 3-hydroxydodecanoate (3HDD). Activities of PHA synthase, a -ketothiolase and an NADPH-dependent reductase were detected in the soluble cytosolic fraction obtained from gluconate-grown cells of T. thermophilus. The soluble PHA synthase was purified 4271-fold with 8.5% recovery from gluconate-grown cells, presenting a Km of 0.25 mM for 3HB-CoA. The optimal temperature of PHA synthase activity was about 70°C and acts optimally at pH near 7.3. PHA synthase activity was inhibited 50% with 25 M CoA and lost all of its activity when it was treated with alkaline phosphatase. PHA synthase, in contrary to other reported PHA synthases did not exhibit a lag phase on its kinetics, when low concentration of the enzyme was used. Incubation of PHA synthase with 1 mM N-ethyl-maleimide inhibits the enzyme 56%, indicating that cysteine might be involved in the catalytic site of the enzyme. Acetyl phosphate (10 mM) activated both the native and the dephosphorylated enzyme. A major protein (55 kDa) was detected by SDS-PAGE. When a partially purified preparation was analyzed on native PAGE the major band exhibiting PHA synthase activity was eluted from the gel and analyzed further on SDS-PAGE, presenting the first purification of a PHA synthase from a thermophilic microorganism.  相似文献   

20.
Bacillus subtilis CK-2, isolated from garden organic waste compost, was found to have high hydrolytic activity against carboxymethylcellulose (CMC) due to the secretion of an endo--1,4-glucanase. Enzyme production was related to the sporulation process, and was regulated by the concentration of readily metabolizable carbohydrate in growth medium. Enzyme production did not require CMC or other cellulose containing materials. The endo--1,4-glucanase activity was optimal at pH 5.6–5.8 and at 65 MoC, and achieved thermal stability up to 55 MoC. The activity was inhibited by Hg2+. The purified enzyme gave a single band corresponding to a MW of 35.5 kDa on SDS-PAGE, while the Sephadex G-75 chromatography revealed a molecular weight of the active enzyme around 70 kDa, indicating a dimeric form of the active enzyme. The enzyme activity was irreversibly inhibited by SDS. Native PAGE and IEF revealed three different isoelectric forms of the enzyme, all with an identical N-terminal amino-acid sequence.Abbreviations CMC carboxymethylcellulose - DNS dinitrosalicylic - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号