首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Using four repetitive sequences, we compared DNAs isolated from Mus caroli, M. cookii, M. hortulanus, M. musculus, M. pahari, M. saxicola, and M. spretus. Except for B1, these probes showed species-specific hybridization patterns. Mouse interspersed fragment (MIF) sequences were present in all species examined, but those defined by the 1.3-kb EcoR1 band were fewer in M. pahari and M. saxicola than in the other species. The Y-chromosomal probe showed male-specific accumulation only in M. hortulanus, M. musculus, and M. spretus, which are known to be closely related. The genetic difference between M. spretus and the other two species (M. hortulanus and M. musculus) was clearly demonstrated by a M. musuclus centromeric sequence that hybridized strongly to M. hortulanus and M. musculus DNA but was underrepresented in the genome of M. spretus. These results may suggest the usefulness of these repetitive sequences in the classification of Mus species that display only subtle morphological differences.  相似文献   

6.
Previous work has shown that the gene for the alpha subunit of androgen-binding protein, Abpa, may be involved in premating isolation between different subspecies of the house mouse, Mus musculus. We investigated patterns of DNA sequence variation at Abpa within and between species of mice to test several predictions of a model of neutral molecular evolution. Intraspecific variation among 10 Mus musculus domesticus alleles was compared with divergence between M. m. domesticus and M. caroli for Abpa and two X-linked genes, Glra2 and Amg. No variation was observed at Abpa within M. m. domesticus. The ratio of polymorphism to divergence was significantly lower at Abpa than at Glra2 and Amg, despite the fact that all three genes experience similar rates of recombination. Interspecific comparisons among M. m. domesticus, Mus musculus musculus, Mus musculus castaneus, Mus spretus, Mus spicilegus, and Mus caroli revealed that the ratio of nonsynonymous substitutions to synonymous substitutions on a per-site basis (Ka/Ks) was generally greater than one. The combined observations of no variation at Abpa within M. m: domesticus and uniformly high Ka/Ks values between species suggest that positive directional selection has acted recently at this locus.  相似文献   

7.
alpha 1-Antitrypsin (alpha 1-protease inhibitor), an essential plasma protein, is synthesized predominantly in the liver of all mammals. We have previously shown that Mus caroli, a Southeast Asian mouse species is exceptional in that it expresses abundantly alpha 1-antitrypsin mRNA and polypeptide, in the kidney as well as the liver (Berger, F.G., and Baumann, H. (1985) J. Biol. Chem. 260, 1160-1165) providing a unique model for examination of the evolution of genetic determinants of tissue-specific gene expression. In the present paper, we have further characterized alpha 1-antitrypsin expression in M. caroli. The extrahepatic expression of alpha 1-antitrypsin is limited to the kidney, specifically within a subset of the proximal tubule cells. The developmental pattern of alpha 1-antitrypsin mRNA expression in the kidney differs from that in the liver. In the kidney, alpha 1-antitrypsin mRNA is present at only 2-4% adult level at birth and increases very rapidly to adult level during puberty between 26 and 36 days of age. There are no significant changes in liver alpha 1-antitrypsin mRNA levels during this period. Testosterone, while having only modest affects on alpha 1-antitrypsin mRNA accumulation in the adult kidney, causes a 20-fold induction of the mRNA in the pre-pubertal kidney. This suggests that the increase in alpha 1-antitrypsin mRNA expression during puberty is testosterone mediated. Southern blot analyses of Mus domesticus and M. caroli genomic DNA and a cloned M. caroli alpha 1-antitrypsin genomic sequence, indicate that a single alpha 1-antitrypsin gene exists in M. caroli, whereas multiple copies exist in M. domesticus. These data show that the alteration in tissue specificity of alpha 1-antitrypsin mRNA accumulation that has occurred during Mus evolution is associated with distinctive developmental and hormonally regulated expression patterns.  相似文献   

8.
DNA sequence analysis of the same chromosomal region from two haplotypes of Mus musculus and from the related species M. caroli and M. pahari reveals the presence of long interspersed sequence one (LINES-1, or L1) elements residing at the same nucleotide position in the two most distantly related of the species (M. musculus and M. pahari). The DNA sequence of each of these L1 elements is more similar to that of other L1 elements from its own species than to the other. Thus, the L1 sequence at each of these sites is recent with respect to the divergence of the species. This could be a result of recent gene conversion of L1 elements inherited from a common ancestor or of two recent independent L1 insertion events at the same nucleotide position in the two species. Such specificity of insertion would be quite different from the apparent randomness of other characterized L1 insertion events, such as those in the beta-globin locus. If the recent L1 sequences arose at this site by gene conversion of an ancestral L1 element, then the absence of an L1 element at this location in the M. caroli chromosome examined could arise either from its precise deletion from M. caroli or from the segregation into M. caroli of a polymorphic chromosome present in the ancestral population which was missing this L1 element.  相似文献   

9.
alpha 1-Antitrypsin (AT), one of the major proteinase inhibitors in mammalian serum, is generally considered to be synthesized exclusively in the liver. We have found that a wild-derived Mus species, Mus caroli, expresses AT mRNA in kidney at levels approaching that in liver; no other mouse, inbred or wild-derived, exhibits this striking property. Liver and kidney mRNAs from M. caroli encode very similar AT polypeptides that are distinct from that encoded by Mus musculus liver mRNA. In vivo, liver AT is secreted into the bloodstream, while kidney AT, which is processed differently from the liver protein, is excreted into the urine. Analysis of RNA from a hybrid between M. musculus and M. caroli indicates that a cis-acting genetic element may be responsible for the difference in AT expression. Restriction enzyme digestion patterns of AT genomic sequences in M. caroli DNA are considerably different from those in M. musculus; in addition, these sequences are undermethylated in liver DNA from M. musculus and in liver and kidney DNA from M. caroli, reflecting the respective patterns of expression. Further studies of the altered tissue specificity of AT expression that is apparent in these two related species should lead to new insights into the nature and evolution of genetic determinants of tissue-specific phenotypes.  相似文献   

10.
11.
The levels of expression and genomic organization of genes coding for the major urinary proteins (MUPs) were examined in several stocks of wild-derived mice. Levels of MUP mRNA in the liver varied considerably with M. musculus Brno and M. castaneus males having several-fold more MUP RNA than inbred C57BL/6 males, whereas M. hortulanus, M. caroli and M. cervicolor displayed levels much lower than C57BL/6. Analysis of RNA with MUP cDNAs specific to two different subfamilies of MUP genes revealed that M. caroli and M. cervicolor primarily expressed a MUP mRNA that was less abundant in C57BL/6, suggesting differential expression of subfamilies of genes within the MUP multigene complex. Although inbred males usually have five-fold more MUP mRNA than inbred females, male to female ratios for wild-derived stocks ranged from one to several hundred. Southern blots of genomic DNA hybridized to MUP subfamily probes revealed differences in restriction fragment sizes as well as possible variation in the number of MUP genes in some species. Analysis of urinary proteins from hybrids between C57BL/6 and M. spretus suggested that low MUP expression in M. spretus females was due to cis-acting genetic elements.  相似文献   

12.
A wide range of tissues from three interfertile species of mice and an interspecific hybrid was examined with lectins conjugated to peroxidase to localize specifically glycoconjugates containing terminal alpha-N-acetylgalactosamine, alpha-galactose, and alpha-fucose, and the terminal disaccharide galactose-(beta 1----3)-N-acetylgalactosamine. This battery of lectins disclosed marked heterogeneity of glycoconjugates in different histological sites in a given animal and even between cells in a presumably homogeneous cell population within an organ. No variation with any lectin was observed between individuals of two closely related inbred strains of Mus domesticus at any specific histological or cytological site. In contrast, littermates of an outbred strain of Mus castaneus differed in binding of certain lectins at various sites, attesting to a genetic basis for individual variation. Hybrids between castaneus and domesticus mice also showed individual variation. Moreover, extensive differences between the mouse species were demonstrable with every lectin in glycoconjugates of stored secretions, Golgi cisternae, and apical or basolateral plasmalemma in many cell types. Totaling the differences in tabulated staining intensities for each possible species pair gave a measure of the overall extent of difference at 53 histological sites. According to this measure, the three species are about equally divergent from one another. Some differences between species appeared to depend on histological rather than histochemical variation, as, for example, a greater abundance of granular duct cells in the sublingual and submandibular glands in Mus hortulanus. Other differences were apparently derived from pathological change, as exemplified by casts and lymphoid infiltrates in kidney and structurally atypical submandibular gland lobules in Mus castaneus, and possibly by infiltrating cells in intestinal lamina propria and epithelium in Mus castaneus and hortulanus.  相似文献   

13.
14.
15.
In the early stages of reproductive isolation, genomic regions of reduced recombination are expected to show greater levels of differentiation, either because gene flow between species is reduced in these regions or because the effects of selection at linked sites within species are enhanced in these regions. Here, we study the patterns of DNA sequence variation at 27 autosomal loci among populations of Mus musculus musculus, M. m. domesticus, and M. m. castaneus, three subspecies of house mice with collinear genomes. We found that some loci exhibit considerable shared variation among subspecies, while others exhibit fixed differences. We used an isolation-with-gene-flow model to estimate divergence times and effective population sizes (N(e) ) and to disentangle ancestral variation from gene flow. Estimates of divergence time indicate that all three subspecies diverged from one another within a very short period of time approximately 350,000 years ago. Overall, N(e) for each subspecies was associated with the degree of genetic differentiation: M. m. musculus had the smallest N(e) and the greatest proportion of monophyletic gene genealogies, while M. m. castaneus had the largest N(e) and the smallest proportion of monophyletic gene genealogies. M. m. domesticus and M. m. musculus were more differentiated from each other than either were from M. m. castaneus, consistent with greater reproductive isolation between M. m. domesticus and M. m. musculus. F(ST) was significantly greater at loci experiencing low recombination rates compared to loci experiencing high recombination rates in comparisons between M. m. castaneus and M. m. musculus or M. m. domesticus. These results provide evidence that genomic regions with less recombination show greater differentiation, even in the absence of chromosomal rearrangements.  相似文献   

16.
Tempo and mode of concerted evolution in the L1 repeat family of mice   总被引:10,自引:0,他引:10  
A 300-bp DNA sequence has been determined for 30 (10 from each of three species of mice) random isolates of a subset of the long interspersed repeat family L1. From these data we conclude that members of the L1 family are evolving in concert at the DNA sequence level in Mus domesticus, Mus caroli, and Mus platythrix. The mechanism responsible for this phenomenon may be either duplicative transposition, gene conversion, or a combination of the two. The amount of intraspecies divergence averages 4.4%, although between species base substitutions accumulate at the rate of approximately 0.85%/Myr to a maximum divergence of 9.1% between M. platythrix and both M. domesticus and M. caroli. Parsimony analysis reveals that the M. platythrix L1 family has evolved into a distinct clade in the 10-12 Myr since M. platythrix last shared a common ancestor with M. domesticus and M. caroli. The parsimony tree also provides a means to derive the average half-life of L1 sequences in the genome. The rates of gain and loss of individual copies of L1 were estimated to be approximately equal, such that approximately one-half of them turn over every 3.3 Myr.   相似文献   

17.
In a survey of inbred and wild mouse DNAs for genetic variation at the duplicate renin loci, Ren-1 and Ren-2, a variant Not I hybridization pattern was observed in the wild mouse M. hortulanus. To determine the basis for this variation, the structure of the M. hortulanus renin loci has been examined in detail and compared to that of the inbred strain DBA/2. Overall, the gross features of structure in this chromosomal region are conserved in both Mus species. In particular, the sequence at the recombination site between the linked Ren-1 and Ren-2 loci was found to be identical in both DBA/2 and M. hortulanus, indicating that the renin gene duplication occurred prior to the divergence of ancestors of these mice. Renin flanking sequences in M. hortulanus, however, were found to lack four DNA insertions totaling approximately 10.5 kb which reside near the DBA/2 loci. The postduplication evolution of the mouse renin genes is thus characterized by a number of insertion and/or deletion events within nearby flanking sequences. Analysis of renin expression showed little or no difference between these mice in steady state renin RNA levels in most tissues examined, suggesting that these insertions do not influence expression at those sites. A notable exception is the adrenal gland, in which DBA/2 and M. hortulanus mice exhibit different patterns of developmentally regulated renin expression.  相似文献   

18.
19.
Patterns of DNA Variability at X-Linked Loci in Mus Domesticus   总被引:4,自引:0,他引:4       下载免费PDF全文
M. W. Nachman 《Genetics》1997,147(3):1303-1316
Introns of four X-linked genes (Hprt, Plp, Glra2, and Amg) were sequenced to provide an estimate of nucleotide diversity at nuclear genes within the house mouse and to test the neutral prediction that the ratio of intraspecific polymorphism to interspecific divergence is the same for different loci. Hprt and Plp lie in a region of the X chromosome that experiences relatively low recombination rates, while Glra2 and Amg lie near the telomere of the X chromosome, a region that experiences higher recombination rates. A total of 6022 bases were sequenced in each of 10 Mus domesticus and one M. caroli. Average nucleotide diversity (π) for introns within M. domesticus was quite low (π = 0.078%). However, there was substantial variation in the level of heterozygosity among loci. The two telomeric loci, Glra2 and Amg, had higher ratios of polymorphism to divergence than the two loci experiencing lower recombination rates. These results are consistent with the hypothesis that heterozygosity is reduced in regions with lower rates of recombination, although sampling of additional genes is needed to establish whether there is a general correlation between heterozygosity and recombination rate as in Drosophila melanogaster.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号