首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Hypoxia-inducible factor 1α (HIF-1α) is an important regulator of immune and inflammatory responses. We hypothesized that nasal allergic inflammation is attenuated by HIF-1α inhibition and strengthened by HIF-1α stabilization.

Objective

To elucidate the role of HIF-1α in a murine model of allergic rhinitis (AR).

Methods

Mice were pretreated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2) or the HIF-1α inducer cobalt chloride (CoCl2) in an established AR murine model using ovalbumin (OVA)-sensitized BALB/c mice. HIF-1α and vascular endothelial growth factor (VEGF) expression in nasal mucosa was measured and multiple parameters of allergic responses were evaluated.

Results

HIF-1α and VEGF levels were locally up-regulated in nasal mucosa during AR. Inflammatory responses to OVA challenge, including nasal symptoms, inflammatory cell infiltration, eosinophil recruitment, up-regulation of T-helper type 2 cytokines in nasal lavage fluid, and serum OVA-specific IgE levels were present in the OVA-challenged mice. 2ME2 effectively inhibited HIF-1α and VEGF expression and attenuated the inflammatory responses. Stabilization of HIF-1α by CoCl2 facilitated nasal allergic inflammation. HIF-1α protein levels in nasal airways correlated with the severity of AR in mice.

Conclusions

HIF-1α is intimately involved in the pathogenesis of nasal allergies, and the inhibition of HIF-1α may be useful as a novel therapeutic approach for AR.  相似文献   

2.
Although CD23-dependent transcytosis of IgE and IgE-derived immune complexes across respiratory epithelial cells is likely to play a pivotal role in the initiation and development of airway allergic inflammation, there is currently a lack of physiological support for this phenomena to suggest that the targeting of CD23 could be used as a means of therapeutic intervention. The present study was designed to detect the CD23 expression in the nasal mucosa of allergic rhinitis (AR) murine model by immunohistochemistry and western blotting, and to investigate whether intranasal anti-CD23 treatment could inhibit allergen-induced upper airway inflammation in the AR model. This is the first report to show that CD23 was constitutively expressed in murine nasal epithelial cells, and its expression was significantly up-regulated in the AR murine model. In vivo, the up-regulation of CD23 expression was correlated with increased serum IL-4 levels. Following intranasal anti-CD23 treatment, nasal symptoms were alleviated and histopathologic examination showed a significant decrease in eosinophilic infiltration. Meanwhile, ELISA analysis showed levels of serum leukotriene C4 (LTC4), eosinophil cation protein (ECP), ovalbumin (OVA)-specific IgE and IL-4 also significantly decreased, as were LTC4 and OVA-specific IgE in the nasal lavage fluid. Furthermore, Western blotting analysis showed that ECP expression in the nasal mucosa was down-regulated. Finally, flow cytometric analysis revealed anti-CD23 treatment inhibited Th2 cell responses. These results indicate that intranasal anti-CD23 treatment can reduce allergic responses in a murine model of allergic rhinitis.  相似文献   

3.
IgE is present in airway secretions from human patients with allergic rhinitis and bronchial asthma. However, the contribution of IgE present locally to the overall airway inflammation is not well understood. We hypothesize that Ag-specific IgE can capture airborne Ags and form immune complexes. These immune complexes may function as potent inducers of immune responses in the lung, contributing to the perpetuation of airway inflammation. BALB/c mice were first sensitized with OVA in alum systemically and then challenged with nebulized OVA. Bronchoalveolar lavage (BAL) fluid from these mice contained significant amounts of IgE, of which >50% was Ag specific. The IgE levels in airway secretions remained elevated for more than 15 days after the termination of Ag exposure. Significant amounts of IgE-OVA immune complexes were detected in BAL fluid from the OVA-challenged mice. For comparison of IgE immune complexes vs Ag alone, we treated OVA-immunized mice with intranasal administration of trinitrophenyl-OVA or trinitrophenyl-OVA-anti-DNP IgE. Those treated with the immune complexes showed significantly higher levels of IL-4 and more pronounced eosinophilia in BAL fluid than did those receiving the Ag alone. The IgE immune complexes did not augment the inflammatory response in high affinity IgE receptor (FcepsilonRI)-deficient mice. We conclude that IgE present in the airways can capture the Ag and that the immune complexes thus formed may augment allergic airway response in an FcepsilonRI-dependent manner. Thus, IgE present in airway secretions may facilitate Ag-mediated allergic airway inflammation.  相似文献   

4.
摘要 目的:本研究旨在评估钙蛋白酶抑制剂calpeptin减轻变应性鼻炎大鼠炎症的作用并探讨其机制。方法:将20只雄性SD大鼠采用数字表法随机分为4组:正常组(Normal)、变应性鼻炎组(AR)、地塞米松干预AR组(DXMS+AR)、calpeptin干预AR组(Calpeptin+AR)。造模成功后,对大鼠AR症状进行行为学评分,对大鼠鼻黏膜组织切片以HE和PAS染色法观察鼻黏膜病理改变;对大鼠外周血以ELISA法检测总IgE、IL-4、IL-13水平;对大鼠鼻黏膜组织以免疫蛋白印迹法检测GATA3蛋白表达水平。单因素方差分析进行多组间比较,LSD- t检验进行组间两两比较。结果:与Normal组相比,AR组大鼠的鼻部过敏症状、鼻黏膜嗜酸粒细胞计数及外周血总IgE水平均升高,Calpeptin与地塞米松均能减轻气道炎症,减少嗜酸性粒细胞浸润,降低血清中OVA诱导的IgE的生成。探讨机制发现,酶联免疫吸附试验检测Th2细胞因子,与Normal组比较,AR组血清IL-4、IL-13水平均升高(P<0.05),而Calpeptin与地塞米松均能降低血清IL-4、IL-13水平(P<0.05)。免疫蛋白印迹法检测大鼠鼻黏膜GATA3蛋白表达水平显示,与Normal组比较,AR组鼻黏膜 GATA3表达升高(P<0.05),而Calpeptin与地塞米松组鼻黏膜 GATA3表达均下降(P<0.05)。结论:腹腔注射calpeptin能够减轻变应性鼻炎大鼠局部和全身过敏反应,其机制可能下调GATA3表达,影响Th2细胞的分化及细胞因子的分泌有关。  相似文献   

5.
Mesenchymal stem cells (MSCs) have arisen the attention to be a new attractive therapeutic tool treating autoimmune diseases such as allergic rhinitis (AR). AR is a chronic reversible allergic inflammation caused by the excessive activation of T-helper 2 (Th2) cells. Recently, MSCs have been proposed as a new therapy of AR as it can suppress some cytokines to control allogeneic Th2 response and functions. However, how MSCs function to reduce inflammation remains unclear. In this study, we aimed to investigate the role of ectomesenchymal stem cells (ECTO-MSCs) derived from nasal mucosa in eosinophilic inflammation and how it affects some immunoglobulins and cytokines. We used ovalbumin (OVA) as a sensitizer to induce nasal inflammation in mice by both injection and inhalation. In order to obtain deeper insights into the influences of ECTO-MSCs on nasal inflammation, the migration of ECTO-MSCs was assessed, the numbers of eosinophils and sneezing were counted, and several immunoglobulins and cytokines were measured. Here we show the ECTO-MSCs are able to migrate to inflammation site via tail vein injection. Eosinophils and sneezing were suppressed by ECTO-MSCs. Interestingly, IgE, interleukin (IL)-4, IL-5 and IL-10 secreted by Th-2 cells were down-regulated by ECTO-MSCs whereas IgG2 and IFN-γ were up-regulated. In conclusion, we have observed that ECTO-MSCs are associated with enhanced Th-1 immune response to nasal inflammation and reduced Th-2 immune response. Given the contributions of Th-2 cells to AR, the injection of ECTO-MSCs can be a promising therapy of AR through balancing immune response.  相似文献   

6.
Pretreatment with mycobacterial Ags has been shown to be effective in preventing allergic airway inflammation from occurring in a mouse model. Because most asthmatics are treated after the development of asthma, it is crucial to determine whether mycobacterial Ags can reverse established allergic airway inflammation in the presensitized state. Our hypothesis, based upon our previous findings, is that mycobacteria treatment in presensitized mice will suppress the allergic airway inflammation with associated clinical correlates of established asthma, with the noted exception of factors associated with the early allergic response (EAR). BALB/c mice sensitized and challenged with OVA were evaluated for pulmonary functions during both the EAR and late allergic response, and airway hyperresponsiveness to methacholine. Following this, sensitized mice were randomized and treated with placebo or a single dose (1 x 10(5) CFUs) of bacillus Calmette-Guérin (BCG) or Mycobacterium vaccae via nasal or peritoneal injection. One week later, the mice were rechallenged with OVA and methacholine, followed by bronchoalveolar lavage (BAL) and tissue collection. Mice treated with intranasal BCG were most significantly protected from the late allergic response (p < 0.02), airway hypersensitivity (p < 0.001) and hyperreactivity (p < 0.05) to methacholine, BAL (p < 0.05) and peribronchial (p < 0.01) eosinophilia, and BAL fluid IL-5 levels (p < 0.01) as compared with vehicle-treated, sensitized controls. Intranasal M. vaccae treatment was less effective, suppressing airway hypersensitivity (p < 0.01) and BAL eosinophilia (p < 0.05). No changes were observed in the EAR, BAL fluid IL-4 levels, or serum total and Ag-specific IgE. These data suggest that mycobacterial Ags (BCG>M. vaccae) are effective in attenuating allergic airway inflammation and associated changes in pulmonary functions in an allergen-presensitized state.  相似文献   

7.
Mesenchymal stem cells (MSCs) have been proved to exert anti-inflammatory effects and regulate immune reactions. Traditional Chinese medicine (TCM), qi-fang-bi-min-tang, is effective for some patients with allergic diseases. However, it remains unclear whether MSCs combined with TCM could benefit the treatment of allergic rhinitis (AR). In this study, we reported an additional effect of TCM (qi-fang-bi-min-tang) on the therapy of AR under MSCs treatment. Intriguingly, we observed that TCM-treated MSCs significantly inhibited the symptoms of AR and reduced the pathological changes of nasal mucosa in ovalbumin (OVA)-induced rats. The expression levels of interferon γ (IFN-γ), interleukin-17 (IL-17), and IL-4 were significantly decreased in the plasma of AR rats after injection of TCM-treated MSCs. TCM-treated MSCs reduced the levels of histamine secreted by mast cells and immunoglobulin E (IgE) secreted by plasma cells. In addition, we found that MSCs combined with TCM had a better therapeutic effect than TCM alone on AR in an OVA-induced mouse model. After OVA induction, MSCs combined with TCM significantly reduced the ratio of T helper type 1 (Th1), Th2, and Th17, but increased the proportion of Treg in the spleen of mice. Consistently, the expression levels of IFN-γ, IL-4, and IL-17 were significantly decreased, but transforming growth factor-β1 was significantly increased in the plasma of AR mice after treated with TCM and MSCs. Our results from both rats and mice indicated that the effects of TCM combined with MSCs on the AR might be through regulating the secretion of Th1, Th2, and Th17 cytokines. This study suggested that TCM (qi-fang-bi-min-tang)-treated MSCs could be used in the clinical therapy of AR.  相似文献   

8.
The effect of Bacillus Calmette-Guérin (BCG) treatment in allergic pulmonary reaction was studied in mice genetically selected accordingly to a High (H-IVA) or Low (L-IVA) antibody responsiveness. Mice were immunized with ovalbumin (OVA) or OVA plus BCG. Two days after nasal antigenic challenge, seric IgE and IgG1 anti-OVA, eosinophils in pulmonary tissue, inflammatory cells in bronchoalveolar lavage and the compliance and conductance of respiratory system were evaluated. H-IVA mice were found more susceptible than L-IVA, and BCG was able to inhibit simultaneously the production of IgE, the bronchopulmonary inflammation and bronchial hyperresponsiveness in these genetically selected mice.  相似文献   

9.
Multidrug resistance-associated protein 1 (MRP1) is a cysteinyl leukotriene (CysLT) export pump expressed on mast cells. CysLTs are crucial mediators in allergic airway disease. However, biological significance of MRP1 in allergic airway inflammation has not yet been elucidated. In this study, we sensitized wild-type control mice (mrp1(+/+)) and MRP1-deficient mice (mrp1(-/-)) to ovalbumin (OVA) and challenged them with OVA by aerosol. Airway inflammation and goblet cell hyperplasia after OVA exposure were reduced in mrp1(-/-) mice compared with mrp1(+/+) mice. Furthermore, CysLT levels in bronchoalveolar lavage fluid (BALF) from OVA-exposed mrp1(-/-) mice were significantly lower than those from OVA-exposed mrp1(+/+) mice. Levels of OVA-specific IgE, IL-4, and IL-13 in BALF were also decreased in OVA-exposed mrp1(-/-) mice. IgE-mediated release of CysLTs from murine bone marrow-derived mast cells was markedly impaired by MRP1 deficiency. Our results indicate that MRP1 plays an important role in the development of allergic airway inflammation through regulation of IgE-mediated CysLT export from mast cells.  相似文献   

10.
Allergen sensitization and allergic airway disease are likely to come about through the inhalation of Ag with immunostimulatory molecules. However, environmental pollutants, including nitrogen dioxide (NO2), may promote adaptive immune responses to innocuous Ags that are not by themselves immunostimulatory. We tested in C57BL/6 mice whether exposure to NO2, followed by inhalation of the innocuous protein Ag, OVA, would result in allergen sensitization and the subsequent development of allergic airway disease. Following challenge with aerosolized OVA alone, mice previously exposed via inhalation to NO2 and OVA developed eosinophilic inflammation and mucus cell metaplasia in the lungs, as well as OVA-specific IgE and IgG1, and Th2-type cytokine responses. One hour of exposure to 10 parts per million NO2 increased bronchoalveolar lavage fluid levels of total protein, lactate dehydrogenase activity, and heat shock protein 70; promoted the activation of NF-kappaB by airway epithelial cells; and stimulated the subsequent allergic response to Ag challenge. Furthermore, features of allergic airway disease were not induced in allergen-challenged TLR2-/- and MyD88-/- mice exposed to NO2 and aerosolized OVA during sensitization. These findings offer a mechanism whereby allergen sensitization and asthma may result under conditions of high ambient or endogenous NO2 levels.  相似文献   

11.
Monocyte chemoattractant proteins-1 and -5 have been implicated as important mediators of allergic pulmonary inflammation in murine models of asthma. The only identified receptor for these two chemokines to date is the CCR2. To study the role of CCR2 in a murine model of Ag-induced asthma, we compared the pathologic and physiological responses of CCR2(-/-) mice with those of wild-type (WT) littermates following immunization and challenge with OVA. OVA-immunized/OVA-challenged (OVA/OVA) WT and CCR2(-/-) mice developed significant increases in total cells recovered by bronchoalveolar lavage (BAL) compared with their respective OVA-immunized/PBS-challenged (OVA/PBS) control groups. There were no significant differences in BAL cell counts and differentials (i.e., macrophages, PMNs, lymphocytes, and eosinophils) between OVA/OVA WT and CCR2(-/-) mice. Serologic evaluation revealed no significant difference in total IgE and OVA-specific IgE between OVA/OVA WT mice and CCR2(-/-) mice. Lung mRNA expression and BAL cytokine protein levels of IL-4, IL-5, and IFN-gamma were also similar in WT and CCR2(-/-) mice. Finally, OVA/OVA CCR2(-/-) mice developed increased airway hyper-responsiveness to a degree similar to that in WT mice. We conclude that following repeated airway challenges with Ag in sensitized mice, the development of Th2 responses (elevated IgE, pulmonary eosinophilia, and lung cytokine levels of IL-4 and IL5) and the development of airway hyper-responsiveness are not diminished by a deficiency in CCR2.  相似文献   

12.
The lymphoid chemokines CCL19 and CCL21 are known to be crucial both for lymphoid cell trafficking and for the structural organization of lymphoid tissues such as nasopharynx-associated lymphoid tissue (NALT). However, their role in allergic responses remains unclear, and so our current study aims to shed light on the role of CCL19/CCL21 in the development of allergic rhinitis. After nasal challenge with OVA, OVA-sensitized plt (paucity of lymph node T cells) mice, which are deficient in CCL19/CCL21, showed more severe allergic symptoms than did identically treated wild-type mice. OVA-specific IgE production, eosinophil infiltration, and Th2 responses were enhanced in the upper airway of plt mice. Moreover, in plt mice, the number of CD4(+)CD25(+) regulatory T cells declined in the secondary lymphoid tissues, whereas the number of Th2-inducer-type CD8alpha(-)CD11b(+) myeloid dendritic cells (m-DCs) increased in cervical lymph nodes and NALT. Nasal administration of the plasmid-encoding DNA of CCL19 resulted in the reduction of m-DCs in the secondary lymphoid tissues and the suppression of allergic responses in plt mice. These results suggest that CCL19/CCL21 act as regulatory chemokines for the control of airway allergic disease and so may offer a new strategy for the control of allergic disease.  相似文献   

13.
The nasal vascular permeability of ovablumin (OVA)-sensitized Brown Norway rats was evaluated by analyzing a brilliant blue concentration in perfusate from the nose after exposure of the nasal mucus to OVA. Oral administration of Lactobacillus GG and L. gasseri TMC0356 significantly inhibited the increase in nasal vascular permeability (P<0.01). The serum IgE of the tested rats also decreased, although the change was not statistically significant. These results indicate that Lactobacillus GG and L. gasseri TMC0356 might alleviate nasal allergic symptoms by suppressing the increase in nasal vascular permeability caused by local inflammation associated with allergic rhnititis.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) signaling cascade plays a pivotal role in the activation of inflammatory cells. Recent findings revealed that the activity of p42/44 MAPK (also known as extracellular signal-regulated kinase (ERK)) in the lungs was significantly higher in asthmatic mice than in normal controls. We hypothesized that inhibition of ERK activity may have anti-inflammatory effects in allergic asthma. BALB/c mice were sensitized with OVA and, upon OVA aerosol challenge, developed airway eosinophilia, mucus hypersecretion, elevation in cytokine and chemokine levels, up-regulation of VCAM-1 expression, and airway hyperresponsiveness. Intraperitoneal administration of U0126, a specific MAPK/ERK kinase inhibitor, significantly (p < 0.05) inhibited OVA-induced increases in total cell counts, eosinophil counts, and IL-4, IL-5, IL-13, and eotaxin levels recovered in bronchoalveolar lavage fluid in a dose-dependent manner. U0126 also substantially (p < 0.05) reduced the serum levels of total IgE and OVA-specific IgE and IgG1. Histological studies show that U0126 dramatically inhibited OVA-induced lung tissue eosinophilia, airway mucus production, and expression of VCAM-1 in lung tissues. In addition, U0126 significantly (p < 0.05) suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine in a dose-dependent manner. Western blot analysis of whole lung lysates shows that U0126 markedly attenuated OVA-induced tyrosine phosphorylation of ERK1/2. Taken together, our findings implicate that inhibition of ERK signaling pathway may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

15.
Knockout mice studies have revealed that NF-kappaB plays a critical role in Th2 cell differentiation and is therefore required for induction of allergic airway inflammation. However, the questions of whether NF-kappaB also plays a role in the effector phase of airway allergy and whether inhibiting NF-kappaB could have therapeutic value in the treatment of established asthma remain unanswered. To address these issues, we have assessed in OVA-sensitized wild-type mice the effects of selectively antagonizing NF-kappaB activity in the lungs during OVA challenge. Intratracheal administration of NF-kappaB decoy oligodeoxynucleotides to OVA-sensitized mice led to efficient nuclear transfection of airway immune cells, but not constitutive lung cells and draining lymph node cells, associated with abrogation of NF-kappaB activity in the airways upon OVA provocation. NF-kappaB inhibition was associated with strong attenuation of allergic lung inflammation, airway hyperresponsiveness, and local production of mucus, IL-5, IL-13, and eotaxin. IL-4 and OVA-specific IgE and IgG1 production was not reduced. This study demonstrates for the first time that activation of NF-kappaB in local immune cells is critically involved in the effector phase of allergic airway disease and that specific NF-kappaB inhibition in the lungs has therapeutic potential in the control of pulmonary allergy.  相似文献   

16.
BACKGROUND: Allergic rhinitis (AR) is a disease characterized by IgE-mediated, allergic inflammation of the nasal mucosa. T helper (Th) 2 cells play an important role in the development of IgE-mediated diseases such as AR, with local overproduction of Th2 cytokines (IL-4, IL-5 and IL-13) at the site of allergic inflammation. Th1 cytokines (IL-12 and IFN-gamma) are known to suppress this Th2 immune response, aiding the treatment of these diseases. Beta-1,3-1,6-glucan (Glucan) is an immunomodulator stimulating particularly the antitumor response. An efficient antitumor stimulation can be achieved through a Th1-mediated immune response. OBJECTIVE: The aim of this study was to investigate the effects of Glucan on the immunopathogenic processes in the microenvironment to determine if it reverses the Th2-mediated immune response in AR to Th1-mediated response. METHODS: 24 Olea europea mono-sensitized patients with AR were randomized into Glucan and placebo groups. The Glucan group consisted of 12 patients who received Glucan treatment for 12 weeks, while the placebo group of 12 patients received placebo during the same period. A nasal provocation test (NPT) with Olea europea was performed at the beginning and end of treatment, and nasal lavage followed the positive NPT. IL-4, IL-5, IFN-gamma and IL-12 levels and the eosinophil count (%) were measured in nasal lavage fluid (NLF) samples. Simultaneously, peripheral blood eosinophil % values were measured. RESULTS: After treatment, IL-4 and IL-5 levels in NLF from the Glucan group were found to have decreased significantly (p = 0.027, p = 0.04; respectively), while IL-12 levels were found to have significantly increased (p = 0.008). However, IFN-gamma levels had not changed. On the other hand, none of the cytokine levels had changed significantly in the placebo group following treatment. Moreover, the percentage of eosinophils in the NLF was found to have decreased significantly after treatment in the Glucan group (p = 0.01), while that of the placebo group did not change. Peripheral blood percentage eosinophil levels had not changed significantly in any group. CONCLUSION: Th2-originated IL-4 and IL-5 levels responsible for the allergic inflammatory response in the microenvironment of patients with AR, are decreased with Glucan while levels of Th1-originated IL-12 are increased. Moreover, eosinophils, which are important effector cells of the inflammatory response, are decreased in the microenvironment. As a result, Glucan may have a role as an adjunct to standard treatment in patients with AR.  相似文献   

17.
Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice.  相似文献   

18.
We have reported that a 24 kDa protein (22U homologous; As22U) of Anisakis simplex larvae could elicit several Th2-related chemokine gene expressions in the intestinal epithelial cell line which means that As22U may play a role as an allergen. In order to determine the contribution of As22U to allergic reactions, we treated mice with 6 times intra-nasal application of recombinant As22U (rAs22U). In the group challenged with rAs22U and ovalbumin (OVA), the number of eosinophils in the bronchial alveolar lavage fluid (BALF) was significantly increased, as compared to the group receiving only OVA. In addition, mice treated with rAs22U and OVA showed significantly increased airway hyperresponsiveness. Thus, severe inflammation around the airway and immune cell recruitment was observed in mice treated with rAs22U plus OVA. The levels of IL-4, IL-5, and IL-13 cytokines in the BALF increased significantly after treatment with rAs22U and OVA. Similarly, the levels of anti-OVA specific IgE and IgG1 increased in mice treated with rAs22U and OVA, compared to those treated only with OVA. The Gro-α (CXCL1) gene expression in mouse lung epithelial cells increased instantly after treatment with rAs22U, and allergy-specific chemokines eotaxin (CCL11) and thymus-and-activation-regulated-chemokine (CCL17) gene expressions significantly increased at 6 hr after treatment. In conclusion, rAs22U may induce airway allergic inflammation, as the result of enhanced Th2 and Th17 responses.  相似文献   

19.
20.
There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号