首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
不同剂量的He—Ne激光对Raji细胞膜脂流动性的影响   总被引:2,自引:0,他引:2  
本文采用荧光偏振法检测了不同剂量的He-Ne激光照射法对Raji细胞膜流动性的影响,发现了0.01J/cm^2和0.51J/cm^2两剂量可使膜脂微粘度降低(P〈0.05)。即其膜脂流动性升高;1.0J/cm^2和2.0J/cm^2的剂量脂微粘度无明显影响,即其膜流动性无明显化(P〉0.05),而6.02J/cm^2的剂量可使膜微粘度明显上升(P〈0.05)。即其膜流动性明显下降。  相似文献   

2.
膜脂物理状态的变化与肺腺癌细胞A549的顺铂耐药性   总被引:4,自引:0,他引:4  
用荧光探剂DPH分别标记药物敏感的肺腺癌细胞A549和抗顺铂药物的肺腺癌细胞A549/DDP, 对其膜脂物理状态的变化研究结果表明, 对顺铂药物敏感的A549的DPH各向异性值(P)为0.162, 而抗顺铂药物的A549/DDP者为0.194, 统计分析表明二者具有明显的差异. 当用可探测细胞膜脂双层不同层次的荧光探剂2-AS, 7-AS和12-AS进一步测定不同层次的膜脂质分子的流动性变化时, 结果表明: 分别反映膜表层和中层的2-AS和7-AS的各向异性值, 对敏感性的A549细胞分别为0.134和0.144, 具抗药性的A549/DDP细胞则分别为0.171和0.178. 而反映膜深层脂质分子变化的12-AS的各向异性值二者却无显著差异. 这提示, 两种细胞膜脂流动性的变化主要反映在膜的表层和中层. 同时, 用MC540荧光探剂标记两种细胞膜在FCM (flow cytometry)上测定反映膜脂质分子头部堆积程度差异的二维散点图及频数分布直方图的结果分析也表明, A549/DDP细胞膜脂质分子的有序性增加, 即流动性降低. 用气相色谱测量两株细胞膜脂肪酸的不饱和度, A549/DDP细胞膜脂肪酸的不饱和度明显低于A549细胞, 进一步肯定了上述结果. 结果提示, 在药物长期作用下, 膜脂物理状态的变化亦可能是肿瘤细胞具有抗药性的原因之一.  相似文献   

3.
采用疏水性荧光探针DPH(1,6,-苯基-1,3;5-已三烯)标记感染了流行性出血热病毒的正常人骨髓细胞的细胞膜,根据荧光偏振值的变化推导出膜脂流动性,同时通过细胞组化染色定量方法,测定细胞内酸性磷酸酶(ACP)和琥珀酸脱氢酶(SDH)的活性。动态观察1、6、24、72h培养后的淋巴细胞、单核细胞、中性粒细胞,发现感染后细胞膜脂的流动性明显降低,并随培养时间的延长而明显,和正常对照组比较有显著性差异(P<0.05~0.01)。通过组化染色和显微分光光度计单细胞扫描定量认为:感染细胞在培养开始的72h内ACP、SDH升高,120h后明显下降,和正常相比亦有显著差异(P<0.05),这与病毒侵犯和细胞机能的受损程度有关。  相似文献   

4.
小鼠感染日本血吸虫尾蚴后第28天,右心耳心房特殊颗粒数目显著减少,且多见膜溶解、断裂,半月形排空和颗粒膜与横管膜及肌膜靠近、融合及颗粒向横管腔及肌膜下突出的现象。心肌细胞内线粒体有肿胀、基质变浅及部分嵴断裂现象。感染组小鼠右心耳心房特殊颗粒的体密度(0.0323±0.0029μm3/μm3)、面数密度(0.8647±0.0692μm-2)、数密度(3.2363±0.1114μm-3)及颗粒平均直径(0.2671±0.0207μm)均显著小于对照组的0.0971±0.0127μm3/μm3、1.921±0.1145μm-2、0.2189±0.0866μm-3和0.3108±0.0195μm。本文阐述了日本血吸虫感染后,促进心房特殊颗粒释放增加。  相似文献   

5.
用电子自旋共振自旋标记物氮氧自由基硬脂酸和马来酰亚胺标记大鼠红细胞膜脂和膜蛋白,测定膜脂流动性和膜蛋白构象改变,以硫代巴比妥酸法测定脂质过氧化产物丙二醛含量.结果表明,锌7-与镉7-金属硫蛋白对羟自由基引起的膜脂流动性减低、脂质过氧化反应增强双膜蛋白构象改变有明显抑制作用,而且,前者的作用明显强于后者.  相似文献   

6.
本文观察了热应激对大鼠肺组织细胞膜中β-受体Bmax,磷脂酶A_2(PLA_2)活性,磷脂酰胆碱(PC),磷脂酰丝氨酸(PS)含量的影响及膜流动性的改变。测得正常大鼠肺中β-受体的B_(max),PLA_2活性,PC和PS值分别为479±94fmol/mg蛋白,78.5±8.2U,53.5±9.7mg/g湿重和425.1±68.1μg/g湿重;在热应激使肛温达42℃并持续15min时,β-受体B_(max)减少43%;PLA_2活性增加83%,PC和PS分别减少50%和47%;测流动性结果表明,热应激使红细胞和肺组织细胞膜流动性都明显减弱。作者认为这些变化之间的关系是:β-受体B_(max)的减少可能是热应激时激活了肺组织细胞膜中的PLA_2,加速了PC和PS等的分解代谢,使膜液晶态改变的结果。  相似文献   

7.
采用放射性配基结合分析法,现察内毒大致大鼠急性肺损伤时肺β-肾上腺素能受体(β-AR)的变化。分别用荧光偏振法和高效液相色谱测定肺组织细胞膜脂流动性和磷脂含量。结果显示:(1)静脉注射内毒素后4h,大鼠肺β-AR的最大结合容量明显降低,较对照组减少47%;(2)内毒素组肺膜脂流动性和磷脂含量均明显降低,同时伴有肺组织磷脂酶A2(PLA2)活性升高。提示:(1)β-AR下调导致其介导的功能减弱,在内毒素诱导的大鼠急性肺损伤发病机理中起一定作用;(2)PLA2激活是膜磷脂减少的重要原因,后者可导致膜脂流动性降低,结果引起β-AR的侧向扩散和旋转运劝减弱,从而减少β-AR与配基结合的机率,出现β-AK下调。  相似文献   

8.
本文利用荧光漂白恢复,顺磁共振和细胞电泳等技术研究外源性配体伴刀豆球蛋白A与巨噬细胞膜受体结合后膜蛋白及膜脂分子运动以及细胞表面电荷变化,结果表明,细胞膜表面蛋白分子侧向扩散速度减慢;膜脂分子流动性减慢,烃链有序性增强;细胞电泳速度加快。此等对阐明伴刀豆球蛋白A作为外源信息导致细胞膜分子动力学变化以及电荷改变有重要的生物学意义。  相似文献   

9.
脂质是细胞膜的重要组成部分,正常情况下,膜脂处于流动状态,以便维持细胞的正常生理功能,膜流动性的改变不仅影响细胞膜的变形能力和脆性,而且影响物质通过膜的转运及膜上结合酶的活力。为了探讨慢性肾功能衰竭(CRF)患者细胞膜的流动状态,作者用荧光偏振技术测定了接受血透的患者红  相似文献   

10.
ESR研究急性运动及恢复期大鼠RBCM脂流动性的改变   总被引:2,自引:0,他引:2  
本文以大鼠递增负荷力竭性运动为模型,利用电子自旋共振(ESR)技术测定急性运动中及不同时程恢复期红细胞膜(RBCM)脂流动性的改变。RBCM脂尾部流动性在短时间中等强度运动(三级负荷末)即有明显下降(P<0.05),在运动后恢复期进行性加重,并于运动后12h达极显著改变(P<0.01):此时膜脂头部流动性也明显下降(P<0.05)。之后二者均有恢复趋势,提示递增负荷力竭性运动对RBCM脂流动性有重要影响,并且RBCM脂流动性与膜功能相互作用,互相影响  相似文献   

11.
交变应力作用下烟草细胞热力学相行为的研究   总被引:29,自引:0,他引:29  
研究了交变应力对烟草愈伤组织细胞的影响, 采用本实验室研制的强声波发生装置来产生交变应力场, 并利用差式扫描量热仪(DSC) 研究了不同强度和频率的交变应力作用后烟草细胞热力学相行为的变化。研究结果表明:交变应力的影响与应力的频率和强度密切相关,一定频率和强度范围内的交变应力能使得植物细胞的相变温度有明显的降低, 而过高频率的应力刺激则会使细胞相变温度升高。细胞热力学相变反映了细胞壁膜的流动性,相变温度变低表明细胞壁膜的流动性增强, 这必然为细胞的生长和分裂提供了便利的条件。 因此, 对于从细胞和分子水平研究交变应力对植物生长、发育的影响及其作用机理是一个很有意义的尝试  相似文献   

12.
Soy isoflavones represent hopeful unconventional remedies in the therapy of prostate cancer. The aim of our study was to determine the effects of genistein and daidzein on the parameters that reflect metastatic potential, membrane fluidity, invasiveness and dynamic phenotype in Matrigel of LNCaP and PC-3 prostate cancer cells. Cell viability tests, using a wide range of concentrations of soy isoflavones (6–75 μg/ml for 72 h), were conducted to determine their IC50 concentrations. Electron paramagnetic resonance investigations of prostate cancer cell membrane fluidity were performed at IC50 concentrations of genistein and daidzein (12.5 and 25 μg/ml, respectively, for 10 min). Genistein provoked significant increases in the membrane order parameter (which is reciprocally proportional to membrane fluidity) of 0.722 ± 0.006 (LNCaP), 0.753 ± 0.010 (LNCaP + genistein), 0.723 ± 0.007 (PC-3) and 0.741 ± 0.004 (PC-3 + genistein); however, no such effects were observed for daidzein. While both genistein and daidzein reduced the proliferation of prostate cancer cells at their respective IC50 concentrations, during the 72 h of incubation only genistein provoked effects on the dynamic phenotype and decreased invasiveness. The effect was more evident in PC-3 cells compared to LNCaP cells. Our results imply that (1) invasive activity is at least partially dependent on membrane fluidity, (2) genistein may exert its antimetastatic effects by changing the mechanical properties of prostate cancer cells and (3) daidzein should be applied at higher concentrations than genistein in order to achieve pharmacological effects.  相似文献   

13.
Organisms adjust the order, or fluidity, of their cellular membranes in response to changes in their physiochemical environment by adjusting the lipid composition of their membranes. We investigated membrane fluidity using the phospholipid, fatty acid and cholesterol content of red blood cells (RBCs) from multiple sclerosis (MS) patients and correlated this with C-reactive protein (CRP) as well as with the severity of neurological outcome as measured by the Kurtzke Expanded Disability Status Scale (EDSS) and its Functional System Scores. The study group consisted of 31 patients with MS and 30 healthy control subjects. Phospholipids were determined using a colorimetric assay, fatty acids by gas chromatography, cholesterol by an enzymatic assay and CRP by a Beckman nephelometer. Cell membrane fluidity was calculated according to previously established formulae. RBC membrane fluidity as measured by the saturated to polyunsaturated fatty acid ratio was higher in patients than in controls (P = 0.04). The phosphatidylethanolamine saturated to polyunsaturated fatty acid ratio showed highly significant positive correlations with the EDSS and CRP < 5 μg/ml. CRP showed significant inverse correlations with the saturated nature but positive correlations with the ordered-crystalline-phase to liquid-crystalline-phase lipid ratio. In this study we show that membrane fluidity as measured by the relationship between membrane fatty acids, phospholipids and cholesterol is closely interrelated with inflammation and disease outcome in patients with MS. In conclusion, our findings suggest that the membrane lipid composition of patients with MS and, consequently, membrane fluidity are altered, which seems to be influenced by the inflammatory status.  相似文献   

14.
To assess whether alterations in membrane fluidity of neonatal rat heart cells modulate gap junctional conductance (g j ), we compared the effects of 2mm 1-heptanol and 20 μm 2-(methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)-octanoate (A2C) in a combined fluorescence anisotropy and electrophysiological study. Both substances decreased fluorescence steady-state anisotropy (rss), as assessed with the fluorescent probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) by 9.6±1.1% (mean ±sem,n=5) and 9.8±0.6% (n=5), respectively, i.e., both substances increased bulk membrane fluidity. Double whole-cell voltage-clamp experiments showed that 2mm heptanol uncoupled cell pairs completely (n=6), whereas 20 μm A2C, which increased bulk membrane fluidity to the same extent, did not affect coupling at all (n=5). Since gap junction channels are embedded in relatively cholesterol-rich domains of the membrane, we specifically assessed the fluidity of the cholesterol-rich domains with dehydroergosterol (DHE). Using DHE, heptanol increased rss by 14.9±3.0% (n=5), i.e., decreased cholesterol domain fluidity, whereas A2C had no effect on rss (−0.4±6.7%,n=5). Following an increase of cellular “cholesterol” content (by loading the cells with DHE), 2mm heptanol did not uncouple cell pairs completely:g j decreased by 80±20% (range 41–95%,n=5). The decrease ing j was most probably due to a decrease in the open probability of the gap junction channels, because the unitary conductances of the channels were not changed nor was the number of channels comprising the gap junction. The sensitivity of non-junctional membrane channels to heptanol was unaltered in cholesterol-enriched myocytes. These results indicate that the fluidity of cholesterol-rich domains is of importance to gap junctional coupling, and that heptanol decreasesg j by decreasing the fluidity of cholesterol-rich domains, rather than by increasing the bulk membrane fluidity.  相似文献   

15.
Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast''s sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.  相似文献   

16.
目的:研究肺叶切除术对红细胞及淋巴细胞膜流坳性的影响。方法:选择20例择期开胸手术病人,均作肺叶切除术。分别用微量滴定法、高效液权色谱法和DPH荧光探剂法测定血浆和红细胞膜PLA2活性,红细胞膜磷脂PS、PE、PC和红细胞、淋巴膜脂流动性。结果:手术10min、手术60min和手术结束后30min血浆和红细胞膜PLA2活性均显著高于麻醉诱导前;手术60min和手术结束后30min 红细胞膜PS、P  相似文献   

17.
The present study investigated and compared the effect of growth temperature on the susceptibility of biofilm-detached and planktonic Staphylococcus aureus cells, to benzalkonium chloride (BAC). This study also highlights the impact of BAC on the bacterial physiology and the role of membrane fluidity regulation as a bacterial resistance mechanism. The minimum inhibitory concentration of BAC was characterized with micro-dilution growth inhibition assay. The BAC treatment was performed on S. aureus cultured at 20 °C and 37 °C, for 24 h. The morphology of S. aureus cells was examined using scanning electron microscopy. The loss of bacterial membrane integrity after BAC treatment was studied by monitoring the intracellular potassium ion leakage using the atomic absorption spectroscopy. The bacterial membrane total fatty acid composition, controlling the membrane fluidity, was analyzed by GC/MS. The results showed that the resistance of S. aureus cells to BAC increased with the increase of growth temperature. The planktonic cells were more susceptible to BAC than biofilm-detached ones. The rise of growth temperature resulted in an increase of S. aureus membrane rigidity. Furthermore, a higher membrane fluidity was observed in planktonic cells when compared to that in the biofilm-detached ones. The resistance of S. aureus seems to depend on the growth temperature. Compared to planktonic cells, biofilm-detached cells showed a greater resistance to BAC. The BAC targets and disturbs the bacterial membrane. Membrane fluidity modulation is likely a one of resistance mechanisms for S. aureus to BAC at the cellular scale. Therefore, disinfection procedures, in food sector, should be adapted for bacteria detached from biofilm.  相似文献   

18.
Fluorescence anisotropy measurements are widely used as sensitive indicators of cell membrane fluidity. 1-[4-(trimethylamino)phenyl]-6-phenyl hexa-1,3,5-triene (TMA-DPH) is a cationic fluorescent aromatic hydrocarbon that anchors at the lipid-water interface of membrane lipid bilayers. Its uptake into porcine pulmonary artery and aortic endothelial cells was monitored and the probe remained specifically localized on the cell surface for at least 4 h. It can therefore be recommended for use for specific plasma membrane lipid fluidity measurements in these cells. The effect of hyperoxia on plasma membrane fluidity was measured by using TMA-DPH. In both cell types, hyperoxic damage resulted in decreases in plasma membrane fluidity. Recovery was achieved 48 h after a 42-h hyperoxic exposure. These results indicate that TMA-DPH is a sensitive probe of plasma membrane lipid domains of pulmonary artery and aortic endothelial cells and that hyperoxia causes reversible changes in the physical state of superficial lipid domains of the plasma membrane of these cells.  相似文献   

19.
Artificial transformation of Escherichia coli with plasmid DNA in presence of CaCl2 is a widely used technique in recombinant DNA technology. However, exact mechanism of DNA transfer across cell membranes is largely obscure. In this study, measurements of both steady state and time-resolved anisotropies of fluorescent dye trimethyl ammonium diphenyl hexatriene (TMA-DPH), bound to cellular outer membrane, indicated heat-pulse (0°C→42°C) step of the standard transformation procedure had lowered considerably outer membrane fluidity of cells. The decrease in fluidity was caused by release of lipids from cell surface to extra-cellular medium. A subsequent cold-shock (42°C→0°C) to the cells raised the fluidity further to its original value and this was caused by release of membrane proteins to extra-cellular medium. When the cycle of heat-pulse and cold-shock steps was repeated, more release of lipids and proteins respectively had taken place, which ultimately enhanced transformation efficiency gradually up to third cycle. Study of competent cell surface by atomic force microscope showed release of lipids had formed pores on cell surface. Moreover, the heat-pulse step almost depolarized cellular inner membrane. In this communication, we propose heat-pulse step had two important roles on DNA entry: (a) Release of lipids and consequent formation of pores on cell surface, which helped DNA to cross outer membrane barrier, and (b) lowering of membrane potential, which facilitated DNA to cross inner membrane of E. coli.  相似文献   

20.
The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号