首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract 1. In ant social parasitism, the process by which parasite–host systems evolved and the types of invasion mechanisms parasites use are being debated. Emery’s rule, for example, states that social parasites are the closest relatives to their hosts. The present study uses previously published data to test whether Emery’s rule applies equally to all parasitism types (i.e. xenobiosis, temporary, dulosis, and inquilinism). In addition, this study also investigates other links between parasite–host relatedness and host biology, which has implications for understanding the invasion mechanisms used by certain parasites. 2. We find that xenobiotic parasites typically use distantly‐related host species that are of at least medium colony size. Temporary parasites often have multiple host species that are very closely related to the parasite and hosts with medium‐size colonies. Dulotic parasites frequently have multiple host species that are slightly less related and of any size. Lastly, inquiline parasites tend to have a single, very closely related, host species with medium‐size colonies. 3. Parasites tend to be more closely related to host species if they have a single host species or when the host has a large colony size. In contrast, parasites with multiple host species or hosts of small colony size tend to be less related to their hosts. 4. This study is the first to examine trends in ant social parasitism across all known parasite species. Our meta‐analysis shows that Emery’s rule applies to inquilinism and temporary parasitism, but not to dulosis and xenobiosis. Our results also suggest that both parasitism type and parasite–host relatedness predict the number of hosts and host colony size. It may be that a chemical mimicry mechanism allows invasion of large host colonies, but requires close relatedness of parasite and host, and concentration on a single host species.  相似文献   

2.
Inquiline ant species are workerless social parasites whose queens reproduce in colonies of other species alongside the host queens. Inquilines arise either when one non-parasitic species evolves into an inquiline parasite of another non-parasitic species (the interspecific hypothesis), or by the speciation of intraspecific inquilines from their host stock (the intraspecific hypothesis): it is unlikely that inquilines evolve from other forms of social parasite. This paper reviews the evidence for and against the inter-and intraspecific hypotheses. All inquilines are close phylogenetic relatives of their host species (loose ‘Emery's rule’), and some are their host's closest relative (strict ‘Emery's rule’). A problem for the interspecific hypothesis is how to explain the strict Emery's rule, because phylogenetic constraints on host choice are probably quite weak. By contrast, the intraspecific hypothesis has difficulty accounting for the parasites' sympatric reproductive isolation. Facultative polygyny, in which queens may found colonies alone or by adoption into an existing multi-queen colony, should promote the evolution of small intraspecific inquilines. This is because small colony-founding queens should preferentially seek adoption, which provides the opportunity to produce a sexual-only brood. We suggest that microgynes, i.e. miniature queens found in some polygynous ants, represent such parasites. We review the evidence that inquiline species have evolved intraspecifically from microgynes in Myrmica ants. The coexistence within a species of a monogynous (singly-queened) and a polygynous form is probably a phenomenon usually unconnected with inquiline evolution. The reproductive isolation of intraspecific inquilines plausibly arises from divergent breeding behaviour associated with the parasites' small size. Such divergence could involve either a temporal separation in mating episodes, with small parasites maturing early, or a spatial separation, with small males being sexually-selected to mate near the nest with small queens seeking adoption, instead of in mating aggregations. We conclude that inquiline species strictly following Emery's rule could have evolved by the intraspecific route. If so, such species provide evidence for West-Eberhard's “alternative adaptation” hypothesis that between-species diversity frequently stems from diversity within species. They also represent likely cases of sympatric speciation. We suggest work on the parasites' phytogeny, genetics, behaviour and mating biology to test these conclusions further.  相似文献   

3.
The evolutionary origins of social parasitism are very unevenly distributed among ants, bees and wasps, but social parasite lineages are frequently close relatives of their host lineages. Two explanations for these relationships have been proposed: (1) initially, social species are more likely to become parasitic on relatively closely related social species, because they share life history, physiological and behavioural traits that allow successful integration within the host colony; and (2) social parasites have evolved directly from their host lineage via sympatric speciation. Comparative approaches, covering multiple origins and intermediate evolutionary stages, are needed to determine which of these possibilities is more likely. We use molecular phylogenetics to examine multiple origins of parasitism in the bee tribe Allodapini. We identify seven origins resulting in obligate social parasitism (inquilinism), one origin of facultative social parasitism, which was followed by subsequent speciation and where both daughter species remained facultatively parasitic, and one case of frequent facultative heterospecific co‐nesting that probably represents incipient social parasitism. All host–parasite lineage pairs show strong phylogenetic affinities, but only the case of facultative heterospecific nesting involves true sister species relationships. Our results are consistent with the range of parasitic relationships that are expected under an allopatric model for the origin of social parasitism, but are highly problematic for a sympatric speciation model. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 320–331.  相似文献   

4.
1. The study of queen polymorphisms can provide insight into the evolution of alternative life histories in ants. In this paper, results of morphological, social and genetic investigations of the newly discovered queen size dimorphism in Leptothorax cf. andrei are presented. 2. Queens had a bimodal size distribution, and were classified as large (macrogynes) or small (microgynes) queens. Despite their small size, microgynes had a fully developed external flight apparatus and a functional reproductive tract. 3. Queen morphology was not correlated with colony social structure, and the relatedness among nestmate queens was high, indicating secondary polygyny by re‐adoption of related queens (daughters) into existing colonies. 4. The distribution of microsatellite alleles indicated that there is a genetic separation between macro‐ and micro‐gynes but the two morphs belong to the same species. 5. The results support the hypothesis that microgyny in Leptothorax has not evolved as a specialisation to inter‐ or intra‐specific social parasitism but rather is an adaptation to alternative dispersal behaviour.  相似文献   

5.
Social parasitism has been researched extensively in many taxa of social insects, including ants, wasps and bees. However, little research has been done on allodapine bees, a taxon that has numerous independent origins of social parasitism. This study looks at two species of Macrogalea from Madagascar, one of which was previously believed to be a social parasite. Macrogalea is an important genus to study as it is the sister clade to all other allodapine genera, and the species of Macrogalea in Madagascar diverged recently, meaning that the study of a social parasite in this genera would provide insights into the very early stages of social parasite evolution. Macrogalea maizina was determined to be facultatively parasitic based on the presence of many traits that are common to other allodapine social parasites. The host, Macrogalea antanosy, was found to be quasisocial, with most females within a colony being able to reproduce. This has unique consequences for a parasitic strategy, as any invading parasite has no need to remove a queen or suppress the reproduction of the other colony members, a strategy that has been commonly observed for facultative parasites in other taxa. Received 10 May 2005; revised 22 July 2005; accepted 24 August 2005.  相似文献   

6.
In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.  相似文献   

7.
The New World ant genus Pseudomyrmex (subfamily Pseudomyrmecinae) contains about 180 species, of which only one workerless social parasite, P . leptosus , from Florida, has been previously recorded. A new species discovered recently in northern Argentina, P . inquilinus sp. nov., is more derived morphologically and behaviourally than P . leptosus and has convergently developed features characteristic of the workerless inquilines known in other ant subfamilies. These features include diminutive size, reduced mouthparts, a broadened petiole and postpetiole, well-developed subpetiolar and subpostpetiolar processes, and the habit of straddling the gaster of the host queen. A cladistic analysis confirms that the new species is not closely related to its host nor to P . leptosus ; it belongs in fact to a different species complex within the genus Pseudomyrmex . Two widespread Neotropical species, P.filiformis and P.subater , to which P.inquilinus appears to be related, show indications of being temporary social parasites on other, unrelated species of Pseudomyrmex . Thus, there is evidence from comparative natural history that the extreme social parasitism seen in the new species from Argentina was preceded by a period of temporary social parasitism, but 'Emery's Rule'– the claim that social parasites are close relatives of, and evolve from, their hosts – is not supported. Rather, parasitism in Pseudomyrmex seems to have arisen through interspecific colonization and exploitation of congeners. A review of the evidence suggests that Emery's Rule has received too uncritical an acceptance in the literature on social parasitism. Uncertainties about the generality of Emery's Rule and about the plausibility of achieving prezygotic isolation under sympatric conditions undermine the theory that social parasites evolve from within populations of their host species.  相似文献   

8.
A new term, agastoparasitism, is proposed for parasitism among closely related species. Cynipid inquilines are typical agastoparasites. They cannot induce galls; instead their larvae live inside the galls formed by other cynipids. As in many other groups of agastoparasites, there are two competing hypotheses for the evolutionary origin of cynipid inquilines: either they arose from one of their cynipid hosts, and later radiated to exploit other gall-inducing cynipids (monophyletic origin), or they arose repeatedly, each inquiline from its host (polyphyletic origin). These hypotheses for the origin of cynipid inquilines were tested by a phylogenetic analysis of representative species of cynipid gall inducers and inquilines based on adult morphological characters. The analysis supported the monophyly of the inquilines and indicated an origin from gall inducers related to the genus Diastrophus, one of the current host groups. To examine whether the result of the analysis was influenced by convergent similarities among inquilines because of their similar mode of life, all putative apomorphies shared by some or all of the inquilines but not occurring in any of the gall inducers were removed. Despite this, the phylogenetic conclusions essentially remained the same, that is, the support for inquiline monophyly was not caused by convergent evolution. Based on these results, adaptive aspects of the evolutionary origin and maintenance of cynipid inquilinism are discussed, as well as general patterns in the evolution of agastoparasitism.  相似文献   

9.
Phylogeny of ants of the tribe Lasiini (Lasius, Acanthomyops, Prenolepis, Euprenolepis, Paratrechina, Pseudolasius, and Myrmecocystus) was analysed using 81 morphological, ecological, and behavioural characters (for 41 species) and mitochondrial DNA sequences (COI, COII, tRNA-Leu; for 19 species). The free-living subgenus Lasius s. str. is paraphyletic with respect to the rest of genus; the traditional "genus" Acanthomyops should be considered a part of Lasius s. lat.; free-living subgenus Cautolasius is a member of the clade of socially parasitic Lasius ants (=Chtonolasius+Acanthomyops+Austrolasius+Dendrolasius). The tree topology is congruent with two alternative scenarios of origin of the temporary social parasitism: (i) a single origin of the parasitic strategy in a derived subclade of Lasius and a secondary loss of this trait in Cautolasius, (ii) a parallel origin of the social parasitism within the clade of hypogeic Lasius ants (in Chtonolasius, and in Acanthomyops+Dendrolasius+Austrolasius). Emery's rule in the strict sense does not apply to this group because most parasites exploit any ecologically available, even phylogenetically distant host species. The parasitic strategy in Lasius could have originated from the aggressive interactions between cofounding queens during pleometric colony founding and/or from the secondary queen adoption.  相似文献   

10.
Social parasitism, including temporary paratisism, slave-making, and inquilinism, is one of the most intriguing phenomena in ant societies. Inquiline ants are workerless, completely rely on the worker force of their host ants, and have evolved numerous traits to exploit the host’s resources and to increase their own fitness. We examined the inquiline ant Vollenhovia nipponica, which is a social parasite of the congeneric species Vollenhovia emeryi. Host nests collected in the field usually contained multiple V. nipponica queens, suggesting that it is polygynous. However, the average number of queens in a nest decreased from spring to summer, and many old queens were found dead after the eclosion of new sexuals in late summer. Vollenhovia nipponica therefore appears to have a short life span as found in other inquiline ants. Laboratory observation revealed that inseminated queens were aggressive towards each other. Queen-queen antagonism led to the formation of dominance hierarchies, in which only a few dominant queens developed their ovaries and laid eggs. Subordinate queens frequently left the nests by themselves. The system is very similar to “functional monogyny”. Received 21 December 2006; revised 1 September 2007 and 26 February 2008; accepted 29 February 2008.  相似文献   

11.
The systematics of South American fire ants (Solenopsis saevissima species-group) has been plagued by difficulties in recognizing species and their relationships on the basis of morphological characters. We surveyed mtDNA sequences from 623 individuals representing 13 described and undescribed species within the species-group and 18 individuals representing other major Solenopsis lineages to generate a phylogeny of the mitochondrial genome. Our analyses support the monophyly of the S. saevissima species-group, consistent with a single Neotropical origin and radiation of this important group of ants, as well as the monophyly of the socially polymorphic species within the group, consistent with a single origin of polygyny (multiple queens per colony) as a derived form of social organization. The mtDNA sequences of the inquiline social parasite S. daguerrei form a clade that appears to be distantly related to sequences from the several host species, consistent with the view that advanced social parasitism did not evolve via sympatric speciation of intraspecific parasites. An important general finding is that species-level polyphyly of the mtDNA appears to be the rule in this group of ants. The existence of multiple divergent mtDNA lineages within several nominal species (including the pest S. invicta) suggests that the pattern of widespread polyphyly often stems from morphological delimitation that overcircumscribes species. However, in two cases the mtDNA polyphyly likely results from recent interspecific hybridization. While resolving species boundaries and relationships is important for understanding general patterns of diversification of South American fire ants, these issues are of added importance because invasive fire ants are emerging as global pests and becoming important model organisms for evolutionary research.  相似文献   

12.
Ant inquilines are obligate social parasites, usually lacking a sterile worker caste, which are dependent on their hosts for survival and reproduction. Social parasites are rare among the fungus‐gardening ants (Myrmicinae: tribe Attini) and only four species are known until now, all being inquilines from the Higher Attini. We describe Mycocepurus castrator sp.n. , the first inquiline social parasite to be discovered in the Lower Attini. Our study of the parasite's behaviour and life history supports the conclusion drawn from external morphology: Mycocepurus castrator is an evolutionarily derived inquiline parasite of Mycocepurus goeldii. Inquilines are of great interest to evolutionary biology because it is debated if they originated via sympatric or allopatric speciation. We discuss the life history evolution, behaviour and morphology of socially parasitic, fungus‐growing ants.  相似文献   

13.
Competitive interactions often play an important role in local community structure, and particularly so in ant communities. We test predictions derived from a competition model proposed for Scandinavian ant communities by comparing ant nest densities inside and outside fifty randomly-selected territories of competitively dominant wood ants within 30 km of Ume?, northern Sweden. As predicted by the model, competitively-intermediate encounter species, as well as other territorial species, showed complementary occurrences with both studied wood ants, Formica aquilonia Yarrow and F. lugubris Zett.. In contrast, complementary abundances, i.e. lower density of competitively-inferior submissive species in the presence of wood ants, as predicted by the model, was not supported for all submissive species. Of the two studied wood ant species, the nest density of submissive species was negatively correlated only with F. aquilonia. Submissives as a group, as well as Myrmica-species, showed complementary abundances with F. aquilonia, but one Leptothorax and two Serviformica species had higher nest densities in the presence of this competitively-dominant species. We propose that, for Leptothorax, these deviations from the model predictions may be because of limited niche overlap with dominant wood ants, a small worker force and a timid behaviour which does not elicit aggression in wood ants. For the two Serviformica species, we propose a combination of protection against social parasites, inter-specific social control performed by F. aquilonia, and dominance relationships between competitively-inferior submissive species as reasons for the higher nest density inside F. aquilonia territories. Monogyny, and thereby smaller nests, lower worker force, smaller territory (as shown by this study) in F. lugubris, as compared to the polygyny in F. aquilonia, may also help explain the differences in their effects on subordinate species. Our analyses indicate that the linear competition hierarchy model proposed for Scandinavian ants accurately predicts the outcome of interaction between and community composition for dominant territorial and encounter species, but that it needs refinement with respect to the relationship between territorial and submissive species and the resulting community composition. Further studies are needed, especially addressing the complex relationships between these latter groups, and the effects of different competitively-dominant wood ants, to determine the mechanisms determining the outcome of these relationships and to more accurately predict community composition. Received 11 June 2007; revised 11 September 2007; accepted 17 September 2007.  相似文献   

14.
A phylogeny for seventy-two species of Australian thrips in the subfamily Phlaeothripinae, based on cladistic analysis of forty morphological adult characters, is presented. We use this phylogeny to infer the evolutionary history of host-plant affiliations, gall induction and other types of domicile use, and different forms of social behaviour. Maximum parsimony analysis yielded forty-eight cladograms of length 316, and the strict consensus of these cladograms was well resolved. This phylogeny indicated that: (1) associations of thrips with their host plants tend to be evolutionarily conservative, with monophyletic groups of thrips on the host-plant genera Acacia, Casuarina and Geijera, (2) galling has evolved multiple times, on different host plants, (3) transitions in domicile use include changes between galling and living in holes or old galls, between living in glued phyllodes and living in old galls, and between leaf-feeding and galling, and (4) in three of five cases, inquiline lineages were not closely related to their host lineages and the evolution of inquilinism apparently involved a host-plant shift. However, in two cases, inquilines were very closely related to their gall-inducing hosts. Eusocial behaviour (involving soldier castes) has evolved in different lineages from those that exhibit communal behaviour (cooperation in building or defending domiciles), suggesting a lack of direct transition between the two social systems. This phylogeny serves as a framework for future molecular systematic studies, and future comparative analysis of ecology and behaviour in the Phlaeothripinae.  相似文献   

15.
1. The performance of ant colonies depends on different factors such as nest site, colony structure or the presence of pathogens and social parasites. Myrmica ants host various types of social parasites, including the larvae of Maculinea butterflies and Microdonmyrmicae (Schönrogge) hoverfly. How these social parasites affect host colony performance is still unexplored. 2. It was examined how the presence of Maculinea teleius Bergsträsser, Maculinea alcon (Denis & Schiffermüller), and M. myrmicae larvae, representing different feeding and growth strategies inside host colonies, is associated with worker survival, the number of foragers, and colony productivity parameters such as growth and reproduction. 3. It was found that the presence of social parasites is negatively associated with total colony production and the production of ant larvae and gynes. Male production was lower only in nests infested by M. teleius, whereas the number of worker pupae was significantly higher in all types of infested colonies than in uninfested colonies. Laboratory observations indicated that nests infested by Maculinea larvae are characterised by a higher number of foragers compared to uninfested nests but we did not find differences in worker survival among nest types. 4. The observed pattern of social parasite influence on colony productivity can be explained by the feeding strategies of parasitic larvae. The most negative effect was found for M. teleius, which feeds on the largest host brood and eliminates a high number of sexual forms. The strong, adverse influence of all studied parasite species on gyne production may result in low queen production in Myrmica populations exposed to these social parasites.  相似文献   

16.
Structural and functional traits of organisms are known to be related to the size of individuals and to the size of their colonies when they belong to one. Among such traits, propensity to inquilinism in termites is known to relate positively to colony size. Larger termitaria hold larger diversity of facultative inquilines than smaller nests, whereas obligate inquilines seem unable to settle in nests smaller than a threshold volume. Respective underlying mechanisms, however, remain hypothetical. Here we test one of such hypotheses, namely, that nest defence correlates negatively to nest volume in Constrictotermes cyphergaster termites (Termitidae: Nasutitermitinae). As a surrogate to defence, we used ‘patrolling rate’, i.e., the number of termite individuals attending per unit time an experimentally damaged spot on the outer wall of their termitaria. We found that patrolling rate decayed allometrically with increasing nest size. Conspicuously higher patrolling rates occurred in smaller nests, while conspicuously lower rates occurred in larger nests presenting volumes in the vicinity of the threshold value for the establishment of inquilinism. This could be proven adaptive for the host and guest. At younger nest age, host colonies are smaller and presumably more vulnerable and unstable. Enhanced defence rates may, hence, prevent eventual risks to hosts from inquilinism at the same time that it prevents inquilines to settle in a still unstable nest. Conversely, when colonies grow and maturate enough to stand threats, they would invest in priorities other than active defence, opening an opportunity for inquilines to settle in nests which are more suitable or less risky. Under this two-fold process, cohabitation between host and inquiline could readily stabilize.  相似文献   

17.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

18.
Sociobiology of slave-making ants   总被引:4,自引:0,他引:4  
Social parasitism is the coexistence in the same nest of two species of social insects, one of which is parasitically dependent on the other. Though parasitism in general is known to be of crucial importance in the evolution of host species, social parasites, though intriguing, are often considered as a phenomenon of marginal interest and are typically not taken into account in reviews on parasitism. Nevertheless, social parasites are rather common in social bees, wasps, and ants and therefore may offer unique model systems to study a number of fundamental problems in evolutionary biology. Here we review several aspects of the peculiar life history of slave-making ants, which is characterized by socially parasitic founding of colonies and the pillage of broods from neighboring host colonies during slave raids. In particular we focus on the evolution of slave-making habits (dulosis), communication mechanisms between slave makers and their hosts, sex-allocation ratios and reproductive conflict, and the effect of slave makers on host populations. Received: 2 February 2000 / Received in revised form: 21 December 2000 / Accepted: 8 January 2001  相似文献   

19.
Evolution of social parasitism in ants   总被引:1,自引:0,他引:1  
Slave raids of Amazon ants, the beheading of the host colony's queen by a parasitic Bothriomyrmex female, or the protracted throttling of the host queen by an Epimyrma female which has penetrated a Leptothorax nest, are among the most intriguing behaviors to be observed in social parasitic ants. The evolutionary origin of these behaviors, however, is quite obscure, and further work is needed to elucidate how parasitic life cycles could have arisen from the ordinary social organization of ants.  相似文献   

20.
Agricultural intensification is linked to reduced species richness and may limit the effectiveness of predators in agricultural systems. We studied the abundance, diversity, and species composition of wood-nesting ants and frequency of parasitism of poneromorph ants in coffee agroeco systems and a forest fragment in Chiapas, Mexico. In three farms differing in shade management and in a nearby forest fragment, we surveyed ants nesting in rotten wood. We collected pupae of all poneromorph ants encountered, and incubated pupae for 15 d to recover emerging ant parasites. If no parasites emerged, we dissected pupae to examine for parasitism. Overall, we found 63 ant morphospecies, 29 genera, and 7 subfamilies from 520 colonies. There were no significant differences in ant richness or abundance between the different sites. However, there were significant differences in the species composition of ants sampled in the four different sites. The parasitism rates of ants differed according to site; in the forest 77.7% of species were parasitized, and this number declined with increasing intensification in traditional polyculture (40%),commercial polyculture (25%), and shade monoculture (16.6%). For three of four poneromorph species found in >1 habitat, parasitism rates were higher in the more vegetatively complex sites. The result that both ant species composition and ant parasitism differed among by site indicates that coffee management intensification affects wood-nesting ant communities. Further, coffee intensification may significantly alter interactions between ants and their parasites, with possible implications for biological control in coffee agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号