首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

6.
7.
8.
Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1LKO) and Xbp1fl/fl control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1LKO and Xbp1fl/fl mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1fl/fl controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1LKO mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress.  相似文献   

9.
10.
11.
12.
13.
14.
15.

Aims

Proliferation is a ‘multiplier’ for extracellular matrix production and contraction of activated hepatic stellate cells (HSC) in fibrotic liver. Transient receptor potential melastatin-like 7 channels (TRPM7) are implicated in the survival and proliferation of several kinds of cells. This study was aimed to investigate the effect of TRPM7 blocker 2-APB on survival and proliferation of HSC and the underlying mechanisms.

Main methods

Rat HSC were stimulated by 2-APB for 24 h and then collected for further use. Cell viability was detected by MTT, and apoptosis was determined by AnnexinV/PI staining and TUNEL assay. Gene expressions of TRPM7, α-SMA, bcl-2, bax, and endoplasmic reticulum (ER) stress key members CHOP, caspase-12, ATF4, ATF6, Xbp1, GRP78 and calnexin were evaluated with quantitative RT-PCR. Quantifications of α-SMA, TRPM7, CHOP and GRP78 proteins were carried out by Western blot. Transmission electron microscopy and Xbp1 mRNA splicing analysis were also used for detection of ER stress.

Key findings

2-APB decreased TRPM7 and α-SMA expressions in primary HSC, and inhibited proliferation of activated HSC in a dose-dependent manner. 2-APB also decreased total count of activated HSC and increased the number of apoptotic cells. 2-APB increased expressions of bax and ER stress key factors CHOP, caspase-12, ATF4, ATF6, Xbp1, GRP78 and calnexin. Meanwhile, ultra-structural ER changes and spliced Xbp1 mRNA were also observed in 2-APB treated HSC.

Significance

Blockage of TRPM7 could inhibit activation and proliferation of primary HSC and induce apoptotic death of activated cells, in which ER stress was identified as one of possible underlying molecular bases.  相似文献   

16.
The unfolded protein response (UPR) is a signaling network triggered by overload of protein‐folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down‐regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species‐specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER‐localized auxin transporters, including PIN5, we define a long‐neglected biological significance of ER‐based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone‐dependent strategy for coordinating ER function with physiological processes.  相似文献   

17.
18.
19.
20.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号