首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Soil respiration is affected by distributions of roots and soil carbon substrates and by temperature and soil water content, all of which vary spatially and temporally. The objective of this paper was to compare a manual system for measuring soil respiration in a temperate forest, which had a greater spatial distribution of measurements (n=12), but poorer temporal resolution (once per week), with an automated system which had poorer spatial distribution (n=3) but superior temporal frequency of measurements (hourly). Soil respiration was measured between 18 June and 21 August, 2002, at the Harvard Forest in central Massachusetts, USA. The fluxes measured within 1 h of each other by these systems were not significantly different. However, extrapolations of the mid-morning manual measurements to daily flux values were consistently lower (averaging 13% lower) than the daily estimates obtained from summing the 24 hourly measurements of the automated system. On the other hand, seasonal flux estimates obtained by interpolating between weekly manual sampling dates or by summing the hourly automated measurements were nearly identical. Underestimates by interpolated weekly manual measurements during some periods were cancelled by overestimates during other periods. Hence, a weekly sampling schedule may be sufficient to capture the most important variation of seasonal efflux of CO(2) from the soil. The larger number of chambers that could be measured with the manual system (larger n) resulted in a smaller 95% confidence interval for characterizing spatial variability within the study area on most dates. However, the greater sampling frequency of the automated system revealed rapid responses of soil respiration to wetting events, which permitted better empirical modelling of the effects of soil temperature and moisture on soil respiration than could have been achieved with the manual sampling system. Most of the positive residuals of a function that predicts soil respiration based on temperature were from fluxes measured within 12 h of a rain event, and the residuals were positively correlated with water content of the O horizon. The automated system also demonstrated that Q(10) values calculated for diel variation in soil temperature over a few days were not significantly different than Q(10) values for the entire 3 month summer sampling period. In summary, a manual system of numerous, spatially well-distributed flux chambers measured on a weekly basis may be adequate for measuring seasonal fluxes and may maximize confidence in the characterization of spatial variance. The high temporal frequency of measurements afforded by automation greatly improves the ability to measure and model the effects of rapidly varying water content and temperature. When the two approaches can be combined, the temporal representativeness of the manual measurements can be tested with the automated measurements and the spatial representativeness of the automated measurements can be tested by the manual measurements.  相似文献   

2.
Risch AC  Frank DA 《Oecologia》2006,147(2):291-302
Landscape position, grazing, and seasonal variation in precipitation and temperature create spatial and temporal variability in soil processes, and plant biomass and composition in grasslands. However, it is unclear how this variation in plant and soil properties affects carbon dioxide (CO2) fluxes. The aim of this study is to explore the effect of grazing, topographic position, and seasonal variation in soil moisture and temperature on plant assimilation, shoot and soil respiration, and net ecosystem CO2 exchange (NEE). Carbon dioxide fluxes, vegetation, and environmental variables were measured once a month inside and outside long-term ungulate exclosures in hilltop (dry) to slope bottom (mesic) grassland throughout the 2004 growing season in Yellowstone National Park. There was no difference in vegetation properties and CO2 fluxes between the grazed and the ungrazed sites. The spatial and temporal variability in CO2 fluxes were related to differences in aboveground biomass and total shoot nitrogen content, which were both related to variability in soil moisture. All sites were CO2 sinks (NEE>0) for all our measurments taken throughout the growing season; but CO2 fluxes were four- to fivefold higher at sites supporting the most aboveground biomass located at slope bottoms, compared to the sites with low biomass located at hilltops or slopes. The dry sites assimilated more CO2 per gram aboveground biomass and stored proportionally more of the gross-assimilated CO2 in the soil, compared to wet sites. These results indicate large spatio-temporal variability of CO2 fluxes and suggest factors that control the variability in Yellowstone National Park.  相似文献   

3.
We explored the influence of small-scale spatial variation in soil moisture on CO2 fluxes in the high Arctic. Of five sites forming a hydrological gradient, CO2 was emitted from the three driest sites and only the wettest site was a net sink of CO2. Soil moisture was a good predictor of net ecosystem exchange (NEE). Higher gross ecosystem photosynthesis (GEP) was linked to higher bryophyte biomass and activity in response to the moisture conditions. Ecosystem respiration (R e) rates increased with soil moisture until the soil became anaerobic and then R e decreased. At well-drained sites R e was driven by GEP, suggesting substrate and moisture limitation of soil respiration. We propose that spatial variability in soil moisture is a primary driver of NEE.  相似文献   

4.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

5.
Climatic change is predicted to alter rates of soil respiration and assimilation of carbon by plants. Net loss of carbon from ecosystems would form a positive feedback enhancing anthropogenic global warming. We tested the effect of increased heat input, one of the most certain impacts of global warming, on net ecosystem carbon exchange in a Rocky Mountain montane meadow. Overhead heaters were used to increase the radiative heat flux into plots spanning a moisture and vegetation gradient. We measured net whole-ecosystem CO2 fluxes using a closed-path chamber system, relatively nondisturbing bases, and a simple model to compensate for both slow chamber leaks and the CO2 concentration-dependence of photosynthetic uptake, in 1993 and 1994. In 1994, we also measured soil respiration separately. The heating treatment altered the timing and magnitude of net carbon fluxes into the dry zone of the plots in 1993 (reducing uptake by ≈100 g carbon m–2), but had an undetectable effect on carbon fluxes into the moist zone. During a strong drought year (1994), heating altered the timing, but did not significantly alter the cumulative magnitude, of net carbon uptake in the dry zone. Soil respiration measurements showed that when differences were detected in dry zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by temperature-driven changes in carbon output from soil respiration. When differences were detected in dry-zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by a temperature-driven changes in carbon output from soil respiration. Regression analysis suggested that the reduction in carbon inputs from plants was due to a combination of two soil moisture effects: a direct physiological response to decreased soil moisture, and a shift in plant community composition from high-productivity species to low-productivity species that are more drought tolerant. These results partially support predictions that warming may cause net carbon losses from some terrestrial ecosystems. They also suggest, however, that changes in soil moisture caused by global warming may be as important in driving ecosystem response as the direct effects of increased soil temperature.  相似文献   

6.
The contribution of the organic (O) horizon to total soil respiration is poorly understood even though it can represent a large source of uncertainty due to seasonal changes in microclimate and O horizon properties due to plant phenology. Our objectives were to partition the CO2 effluxes of litter layer and mineral soil from total soil respiration (SR) and determine the relative importance of changing temperature and moisture mediating the fluxes. We measured respiration in an oak-dominated forest with or without the O horizon for 1 year within the Oak Openings Region of northwest Ohio. Mineral soil and O horizon respiration were subtracted from mineral soil respiration (MSR) to estimate litter respiration (LR). Measurements were grouped by oak phenology to correlate changes in plant activity with respiration. The presence of the O horizon represented a large source of seasonal variation in SR. The timing of oak phenology explained some of the large changes in both SR and LR, and their relationship with temperature and moisture. The contribution to SR of respiration from the mineral soil was greatest during pre-growth and pre-dormancy, as evident by the low LR:MSR ratios of 0.65 ± 0.10 (mean ± SE) and 0.69 ± 0.03, respectively, as compared to the other phenophases. Including moisture increased our ability to predict MSR and SR during the growth phenophase and LR for every phenophase. Temperature and moisture explained 85% of the variation in MSR, but only 60% of the variation in LR. The annual contribution of O horizon to SR was 48% and the ratio of litter to soil respiration was tightly coupled over a wide range of environmental conditions. Our results suggest the presence of the O horizon is a major mediator of SR.  相似文献   

7.
West Coast prairies in the US are an endangered ecosystem, and effective conservation will require an understanding of how changing climate will impact nutrient cycling and availability. We examined how seasonal patterns and micro-heterogeneity in edaphic conditions (% moisture, total organic carbon, % clay, pH, and inorganic nitrogen and phosphorus) control carbon, nitrogen, and phosphorus cycling in an upland prairie in western Oregon, USA. Across the prairie, we collected soils seasonally and measured microbial respiration, net nitrogen mineralization, net nitrification, and phosphorus availability under field conditions and under experimentally varied temperature and moisture treatments. The response variables differed in the degree of temperature and moisture limitation within seasons and how these factors varied across sampling sites. In general, we found that microbial respiration was limited by low soil moisture year-round and by low temperatures in the winter. Net nitrogen mineralization and net nitrification were never limited by temperature, but both were limited by excessive soil moisture in winter, and net nitrification was also inhibited by low soil moisture in the summer. Factors that enhanced microbial respiration tended to decrease soil phosphorus availability. Edaphic factors explained 76% of the seasonal and spatial variation in microbial respiration, 35% of the variation in phosphorus availability, and 29% of the variation in net nitrification. Much of the variation in net nitrogen mineralization remained unexplained (R 2 = 0.19). This study, for the first time, demonstrates the complex seasonal controls over nutrient cycling in a Pacific Northwest prairie.  相似文献   

8.
降雨对旱作春玉米农田土壤呼吸动态的影响   总被引:2,自引:0,他引:2  
高翔  郝卫平  顾峰雪  郭瑞  夏旭  梅旭荣  李洁 《生态学报》2012,32(24):7883-7893
土壤呼吸是调控全球碳平衡和气候变化的关键过程之一,降雨作为重要的扰动因子,在不同区域和不同环境条件下,对土壤呼吸具有复杂的影响.研究降雨对农田土壤呼吸及其分量的影响,对准确预测未来气候变化下陆地生态系统碳平衡具有重要意义.对黄土高原东部典型春玉米农田生态系统生长季内3次降雨前后土壤呼吸及其分量进行了原位连续观测,结果表明:在土壤湿润的条件下,降雨对春玉米农田土壤呼吸及其分量具有明显的抑制作用,在土壤湿度大于27%后土壤呼吸及其分量随土壤湿度上升呈明显下降,且对温度的敏感性降低.土壤呼吸及其分量在降雨前后的变化受土壤温度和土壤湿度的共同影响.降雨量、降雨历时和雨前土壤含水量决定了土壤呼吸及其分量对降雨响应的程度和时长.土壤呼吸及其分量对土壤温度的敏感性各不相同,微生物呼吸对温度的敏感性最高,Q10为5.14;其次是土壤呼吸,Q10为3.86;根呼吸的温度敏感性相对最低,Q10为3.24.由于土壤呼吸分量对温度和湿度的敏感性不同,降雨后根呼吸的比例有所升高.  相似文献   

9.
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks.  相似文献   

10.
南方红壤区3年生茶园土壤呼吸特征   总被引:4,自引:0,他引:4  
为探讨南方红壤区茶园的土壤呼吸特征,采用LI-Cor8100开路式土壤碳通量测定系统观测3年生茶园系统的土壤呼吸速率,对茶园土壤呼吸速率的季节变化和在茶行尺度上的空间异质性进行了研究。结果表明,茶园土壤呼吸速率的月动态变化呈明显的单峰曲线特征,峰值出现在8月;茶园土壤呼吸速率的月动态变化与温度呈极显著相关(P<0.01),土壤10 cm的温度能够解释茶园不同观测区域土壤呼吸速率月动态变化的67.79%~88.52%;用指数方程计算的茶园不同观测区域土壤呼吸Q10值为1.58~1.86。在茶行尺度上,茶园土壤呼吸速率存在明显的空间异质性,土壤呼吸速率通常在距离茶树基部较近的位置较高;根系生物量能够解释茶园土壤呼吸速率在茶行尺度上空间变异的82.68%。因此,根系分布的空间差异是造成茶园土壤呼吸速率空间异质性的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号