首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulphur fractionation and availability to plants are poorly understood in calcareous soils. Sixty-four calcareous soils containing varying amounts of CaCO3 were collected from ten provinces in China and their S fractions determined. Organic S was the predominant fraction of S, accounting for on average 77% of the soil total S. The amounts of adsorbed sulphate were found to be negligible. 1 M HCl extracted substantially more sulphate than either 0.01 M CaCl2 or 0.016 M KH2PO4, indicating the existence of water-insoluble but acid-soluble sulphate, probably in the form of sulphate co-precipitated with CaCO3. The concentrations of water-insoluble sulphate correlated positively with the contents of CaCO3 and accounted for 0.03–40.3% (mean 11.7%) of soil total S. To test the bioavailability of water-insoluble sulphate, a sulphate-CaCO3 co-precipitate labelled with 35S was prepared and added to a calcareous soil in a pot experiment with either NH4+ or NO3 as the N source. In 29 days, wheat plants took up 10.6% and 3.0% of the 35S added to the soil in the NH4+ and NO3 treatments, respectively. At the end of the pot experiment, the decrease of water-insoluble, acid-soluble, sulphate was more apparent in the NH4+ than in the NO3 treatment. The results indicate that sulphate co-precipitated with CaCO3 in calcareous soils may become partly available for plant uptake, depending on rhizosphere pH, if the field precipitate is similar to the laboratory prepared sample studied.  相似文献   

2.
Soil columns with O + A (Experiment I) or Ohorizons (Experiment II) from a Haplic Podsol wereincubated at 15 °C for 368 and 29 + 106 days,respectively. Three types of liming material differingin Ca2+ content, i.e. calcium carbonate(CaCO3), dolomite (CaMg(CO3)2) andmagnesium carbonate (MgCO3), were mixed into theO horizons in equimolar amounts corresponding to 6000kg of CaCO3 per ha. In the limed treatments ofExperiment I, the leaching of dissolved organic carbon(DOC) and the net sulphur mineralization (estimated asaccumulated SO 4 2– leaching corrected forchanges in the soil pools of adsorbed and waterextractable SO 4 2– ) increased with decreasingCa2+ content of the lime and increasing degree oflime dissolution. In relation to the controltreatment, only the MgCO3 treatment resulted ina significantly higher net sulphur mineralization. InExperiment I the net sulphur mineralization was 4.06,1.68, 0.57, and 2.14 mg S in the MgCO3,CaMg(CO3)2, CaCO3 and control treatment,respectively. The accumulated SO 4 2– leachingin Experiment II during the first 29 days was 1.70,0.74 and 0.48 mg S in the MgCO3,CaMg(CO3)2 and control treatment,respectively. In the two experiments there wereconsistently significant positive correlations betweenleached amounts of SO 4 2– and DOC. It wasconcluded that net sulphur mineralization was stronglyconnected to the solubilization of the organic matter(DOC formation) and that pH and/or Ca2+ ionsaffected the net sulphur mineralization through theireffects on organic matter solubility.  相似文献   

3.
Streptomyces colonies, apparently all of the same species, were isolated from a range of soils using a polysulphide medium lacking an organic carbon source. Growth on this medium, and clearing of the otherwise white, opaque overlay, suggested that the organisms were capable of growing autotrophically. However, investigation of one of these isolates showed that it was unable to fix 14CO2 and did not possess the enzyme ribulose bisphosphate carboxylase, showing that it was incapable of autotrophic growth. The isolate oxidized elemental sulphur, thiosulphate and tetrathionate to sulphate in vitro in carbon-deficient medium, and also oxidized elemental sulphur to sulphate when inoculated into autoclaved soil supplemented with sulphur. It also oxidized polysulphide when growing on Czapek Dox and plate count agars. The isolate can therefore grow heterotrophically in both carbon-rich media and in media lacking organic carbon — presumably by scavenging organic carbon from the laboratory atmosphere. The possible role of these organisms in sulphur oxidation in soils is commented upon.  相似文献   

4.
Giesemann  A.  Jäger  H.-J.  Feger  K. H. 《Plant and Soil》1995,(1):399-404
Sulphur cycling was evaluated in a 20 to 60 year old Norway spruce (Picea abies L. Karst) ecosystem in the Black Forest near Schluchsee, SW Germany, by means of stable sulphur isotope analysis.Soil and plant material were analysed for S-content and S-isotopic composition to gather information on the S-distribution in the ecosystem. Two out of three adjacent watershed areas, highly comparable to each other were fertilized with MgSO4 and (NH4)2SO4 respectively, where sulphate was enriched in the 34S-isotope compared to the sulphur present in the ecosystem. As the fertilizer S served as a tracer, comparison of the S-isotopic composition of total and inorganic S in the soil and S in spruce needles from both the treated and the control sites led to new information of S-turnover processes.The S-isotopic composition of spruce needles changed markedly after the fertilizer application. Within half a year a shift towards the S-isotopic composition of the fertilizers sulphate indicated uptake of the sulphate by the trees, although this uptake did not become visible with the S content of the needles.Regarding the soil, a shift in the S-isotopic composition of the total sulphur was not that striking as with the needles, although the phosphate extractable sulphate showed a clear shift towards the S-isotopic composition of the fertilizer sulphate.  相似文献   

5.
From a quantitative inventory of sulphur forms and sulphur budget, the relation between the distribution of the various sulphur forms and the sulphate fluxes in three soil profiles has been addressed. These profiles are located in two forested watersheds at Mont Lozère. One has been sampled in a beech forest and the other two in a spruce forest and in a harvested plot of this spruce forest, respectively. The mean annual input-output budgets showed a sulphur immobilization in the soil cover of the three plots. In the preserved spruce forest plot, because of larger dry depositions, the sulphur immobilization is much greater than in other plots and occurs essentially in the B horizons. In the other two profiles, the dominant immobilization occurs in the parent material.The total sulphur content is very high in the forest floor reaching 2065 g S g-1 in the litter of one of the soils under spruce. In the organo-mineral horizons of soils under spruce, the total sulphur content decreases with depth and ranges from 310 to 520 g S g-1 in the A horizons to 100–200 g S g-1 in the parent material. In the profile under beech, the total sulphur content is lower except in the parent material. In all cases, the organic sulphur is the major part of sulphur often representing more than 90% of total sulphur. In organo-mineral soil horizons of the spruce forest, the part of the sulphateesters is more important than in the soil of the beech forest, probably related to the different nature of the microbial activity in the spruce forest. In contrast, the humification processes are more efficient in the soil under beech, which can be due to the greater input of organic sulphur by litterfall. It appears that the dominant organic sulphur form varies as a function of microbial ecology and sulphate flux. The maximum of the inorganic sulphate is located at the base of the B horizons in the soil of the spruce forest and in the parent material of the soil under beech. In these horizons, the high content of inorganic sulphate can be related to the higher amounts of amorphous Fe and Al phases.  相似文献   

6.
Summary CH4 accumulation was markedly reduced and acetate accumulation was enhanced by the presence of a vial of alkali in flasks containing soils incubated anaerobically at a moisture content of 80% of saturation. The presence of the vial of alkali had little effect on acetate accumulation until after the commencement of CH4 formation. No hydrogen was found to accumulate in the soils studied regardless of whether acidic gases were absorbed during incubation. The effect of acidic gas absorption on other metabolic processes in two of the soils was studied. The absorption of acidic gases reduced the amounts of extractable Fe and S2– (or volatile mercaptans), the soil pH, and in the more acid soil (Tetonka) net ammonification during anaerobic incubation. In a further experiment the effect of the presence of a vial of alkali on gas, acetate, NH 4 + and S2– accumulation as well as pH changes during anaerobic incubation of the Tetonka soil treated with CaCO3 was studied. CH4, acetate and S2– accumulation were suppressed, net ammonification was little affected, and the soil pH values were higher as a result of the absorption of acidic gases. The rates of CO2, CH4, acetate and S2– accumulation were increased as a result of the addition of CaCO3 to the Tetonka soil.Published with the approval of the Director of the North Dakota Agricultural Experiment Station as Journal Article No.140.  相似文献   

7.
Summary The effect of sodium chloride on sulphur oxidation in Terra Rossa and Rendzina soils was studied by incubation and perfusion techniques. Sulphur oxidation was observed at concentrations up to 8 per cent NaCl, but was completely arrested at 10 per cent sodium chloride. Sodium chloride caused a delay in the onset of sulphur oxidation, its rate being only slightly affected. A relationship between sulphate appearance and decrease in pH was observed only in sulphur-amended Terra Rossa soil. Under optimal conditions, 53 and 54 per cent of added sulphur (5000 ppm) was recovered as SO4-S from the Terra Rossa and Rendzina soils, respectively. This maximal level of sulphate production was only slightly affected by the addition of sulphate up to 3000 ppm S.It was concluded that inhibition in further sulphur oxidation was not caused by sulphate accumulation.  相似文献   

8.
9.
The oxygen isotope signature of sulphate (δ18Osulphate) is increasingly used to study nutritional fluxes and sulphur transformation processes in a variety of natural environments. However, mechanisms controlling the δ18Osulphate signature in soil–plant systems are largely unknown. The objective of this study was to determine key factors, which affect δ18Osulphate values in soil and plants. The impact of an 18O‐water isotopic gradient and different types of fertilizers was investigated in a soil incubation study and a radish (Raphanus sativus L.) greenhouse growth experiment. Water provided 31–64% of oxygen atoms in soil sulphate formed via mineralization of organic residues (green and chicken manures) while 49% of oxygen atoms were derived from water during oxidation of elemental sulphur. In contrast, δ18Osulphate values of synthetic fertilizer were not affected by soil water. Correlations between soil and plant δ18Osulphate values were controlled by water δ18O values and fertilizer treatments. Additionally, plant δ34S data showed that the sulphate isotopic composition of plants is a function of S assimilation. This study documents the potential of using compound‐specific isotope ratio analysis for investigating and tracing fertilization strategies in agricultural and environmental studies.  相似文献   

10.
Summary Using 35S-sulphate, the specific activity of various sulphur fractions in some diverse North Queensland soils has been followed for up to 185 days in a glasshouse experiment. The sulphur extracted with 0.01 M calcium phosphate was from the same pool as that used by the test plants, and since near full recovery of added 35SO4 was obtained initially, this fraction is comparable to the L-value. On the other hand, 0.5 M NaHCO3 removed some soil sulphur that was not available to the plants.Liming caused an initial increase in the phosphate extractable fraction, the sulphur seemingly being released from the NaHCO3 extractable fraction, but decreased sulphate sorption also contributed to the increase in S uptake by the plants upon liming. re]19750507  相似文献   

11.
Summary Several agricultural problems are associated with the presence of certain levels of CaCO3 in soils. The level of CaCO3 at which the phosphate fixation becomes an apparent agricultural problem, is thought to be an appropriate margine at which the soil can be considered calcareous. Thus, a set of soil mixtures, ranging in CaCO3 content from 1 to 96% was prepared and used in a column study to determine the level at which the CaCO3 fraction becomes a dominant factor controlling. P32 movement and distribution.Increasing the percentage of oolitic sand, in the soil mixture, from 1 to 10% caused a sharp drop in P32 movement with soil solution and any increase in CaCO3 content above 10% did not show any further drop in P32 movement. The amount of P32 removed with the soil solution was generally low compared to that retained in soil columns. Studying the distribution of P32 in soil columns, after five displacements, has indicated that the migration of P32 from the top soil increased by increasing CaCO3 from 1 and 2 to 6%. The amount of P32 removed was however retained in lower sections. A very sharp decrease in P32 migration from the top soil was observed when CaCO3 content was raised from 8 to 10%.A similar picture was shown when the CaCO3 material used was in clay size fraction. However the sharp increase in phosphate retention in top soil sections took place at CaCO3 content of 8% rather than at 10%. A limit of 8 to 10% CaCO3 was proposed as an appropriate margine for defining calcareous soils.  相似文献   

12.
Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.  相似文献   

13.
Ribulose bisphosphate (RuBP) carboxylase and glycollate oxidase were partially purified from jack pine (Pinus banksiana Lamb.) needles. Preincubation of RuBP carboxylase with HCO3? and Mg2+ markedly stimulated its activity. RuBP carboxylase showed hyperbolic reaction kinetics with respect to HCO3?, Mg2+, and RuBP. Both SO32- and SO42- inhibited RuBP carboxylase, but SO32- was more inhibitory than SO42-. The SO32- inhibition was competitive with respect to HCO3? (whether SO32- was present during activation or was added to the activated enzyme), while the SO42- inhibition was non-competitive with respect to HCO3?. Glycollate oxidase was inhibited more severely by low concentrations of SO32- than by SO42-. Fumigation of jack pine seedlings with 0.34 ppm sulphur dioxide for 24 and 48 hr produced a considerable decline in the activities of these enzymes, but 1 hr of fumigation produced no effect. During the longer exposures the sulphur content of the needles increased considerably, although the needles showed no visible injury. It is suggested that the accumulation of SO32- and SO42- in the needles following sulphur dioxide exposure influenced the enzyme activities.  相似文献   

14.
Summary A study has been made of microbial processes in the oxidation of pyrite in aicd sulphate soil material. Such soils are formed during aeration of marine muds rich in pyrite (FeS2). Bacteria of the type ofThiobacillus ferrooxidans are mainly responsible for the oxidation of pyrite, causing a pronounced acidification of the soil. However, becauseThiobacillus ferrooxidans functions optimally at pH values bellow 4.0, its activity cannot explain the initial pH drop from approximately neutral to about 4. This was shown to be a non-biological process, in which bacteria play an insignificant part. AlthoughThiobacillus thioparus andThiobacillus thiooxidans were isolated from the acidifying soil, they did not stimulate oxidation of FeS2, but utilized reduced sulphur compounds, which are formed during the non-biological oxidation of FeS2.Ethylene-oxide-sterilized and dry-sterilized soil inoculated with pure cultures of mixtures of various thiobacilli or with freshly sampled acid sulphate soil soil did not acidify faster than sterile blanks.Thiobacillus thiooxians. Thiobacillus thioparus. Thiobacillus intermedius andThiobacillus perometabolis increased from about 104 to 105 cells/ml in media with FeS2 as energy source. However, FeS2 oxidation in the inoculated media was not faster than in sterile blanks.Attempts to isolate microorganisms other thanThiobacillus ferrooxidans, like metallogenium orLeptospirillum ferrooxidans, which might also be involved in the oxidation of FeS2 were not successful.Addition of CaCO3 to the soil prevented acidification but did not stop non-biological oxidation of FeS2.  相似文献   

15.
The consumption of rice has become a global food safety issue because rice paddies support the production of high levels of the potent neurotoxin, methylmercury. The production of methylmercury is carried out by chemotrophic anaerobes that rely on a diversity of terminal electron acceptors, namely sulphate. Sulphur can be a limiting nutrient in rice paddies, and sulphate amendments are often used to stimulate crop production, which can increase methylmercury production. Mercury (Hg) redox cycling can affect Hg methylation by controlling the delivery of inorganic Hg substrates to methylators in anoxic habitats. Whereas sulphur is recognized as a key substrate controlling methylmercury production, the controls sulphur exerts on other microbe‐mediated Hg transformations remain poorly understood. To explore the potential coupling between sulphur assimilation and anaerobic HgII reduction to Hg0, we studied Heliobacillus mobilis, a mesophilic anoxygenic phototroph representative from the Heliobacteriacea family originally isolated from a rice paddy. Here, we tested whether the redox state of the sulphur sources available to H. mobilis would affect its ability to reduce HgII. By comparing Hg0 production over a redox gradient of sulphur sources, we demonstrate that phototrophic HgII reduction is favoured in the presence of reduced sulphur sources such as thiosulphate and cysteine. We also show that cysteine exerts dynamic control on Hg cycling by affecting not only Hg's bioavailability but also its abiotic photoreduction under low light conditions. Specifically, in the absence of cells we show that organic matter (as yeast extract) and cysteine are both required for photoreduction to occur. This study offers insights into how one of the most primitive forms of photosynthesis affects Hg redox transformations and frames Heliobacteria as key players in Hg cycling within paddy soils, forming a basis for management strategies to mitigate Hg accumulation in rice.  相似文献   

16.
This article discusses the results of efforts to reclaim As-contaminated soil from a former timber-treating plant. The study site, commonly referred to as the Rocker Timber Framing site, is located along Silver Bow Creek approximately 7 miles west of the Butte Mining District, MT, USA. The plant operations resulted in contamination of the soils with a highly caustic solution containing 5% As (III). Contaminated soil resulted in the groundwater plumes that contained up to 25?mg L?1 As, with As (V) being the predominant species. The objective of this study was to evaluate the effectiveness of Fe (II) treatment for remediation of As-contaminated soils. Laboratory-treatability studies were conducted on samples of saturated zone (AS1) and va-dose zone (AV1) soils. The AS1 soil was a mixture of coarse alluvium and potentially some mill tailings from adjacent mining operations. The AV1 soil consisted primarily of fill, including soil, construction debris, and timber fragments. Initial concentrations of total As in AS1 and AV1 soils were 683 and 4814?µg kg?1, respectively. Water-soluble As concentrations were 15.4 and 554?µg L?1, respectively, in a 20:1 solution to soil extract. Batch equilibration were performed by placing 10?g of soil into 20 vessels and adding increasing amounts of FeSO4.7H2O. Amendment increments were made as multiples of molar ratios of total As present in each soil. Treatability studies were run with and without a pH buffer of CaCO3 (added at a 2:1 molar ratio to the FeSO4.7H2O treatment). Solution concentrations of As in the AS1 and AV1 soils (without CaCO3) decreased from 554 to 15.4?µ L?1 and 3802 to 0.64?µ L?1, respectively, as the Fe:As molar ratios increased from 0 to 2, whereas for the AS1 soil the solution As concentration increased at the Fe:As molar ratios >2 and reverse trend was observed for the AV1 soils. The decrease in As solution concentration for the AS1 soil is attributable to the dramatic decrease in soil pH with increasing Fe:As molar ratios. In the case of soils treated with CaCO3, the solution concentrations decreased from 564 to 0.65?µg L?1 and 3790 to 0.79?µg L?1 for the AS1 and AV1 soils, respectively,as the Fe:As molar ratios increased from 0 to 50. Generally, in both the soils, the CaCO3-treated soil contained significantly more solution As compared with the non-CaCO3-treated soil at the comparable Fe:As molar ratios. This is attributable to higher solution pH on CaCO3 treatment. Our rapid engineering study indicates that treating both the soils with Fe:As molar ratio of 2 lowered the As water quality limit to <50?µL?1, whereas treating the AS1 and AV1 soils with Fe:As molar ratio of 2 and 3, respectively, lowered the As water quality limit to ≤15?µg L?1. The concentrations of the Cu and Zn were below the instrument detection limits for the AS1 and AV1 soils without CaCO3 treatment. Sequential extraction of Fe-treated soils illustrated that As was relatively stable. Less than 1% of the As was extractable using a modified TCLP approach and <70% of the As was extractable using a harsh acid modified hydroxylamine hydrochloride extraction.  相似文献   

17.
When soybean plants are pulsed with [35S]sulphate, label is subsequently redistributed from the roots to the leaves. This confounds studies to measure the redistribution of label from leaves. Accordingly, soybean plants ( Glycine max [L.] Merr. cv. Stephens) were grown in 20 μ M sulphate and a small portion of the root system (donor root) was pulsed with [35S]sulphate for 24 h. After removing the donor root, the plants were transferred into unlabelled solution, either without sulphate (S20→SO) or with 20 μ M sulphate (S20→20) (intact plants). Also at this time, the expanding leaf (L3) was excised from half of the plants in each treatment (excised plants). Immediately after the pulse, only ca 15% of the label occurred in the roots and ca 40% in the expanding leaf, L3, mostly in the soluble fraction. In intact S20→20 plants, 35S-label was exported from the soluble fraction of L3, mostly as sulphate, whilst L4 and L5 imported label. Similar responses occurred in S20→SO plants except that export of label from L3 was more rapid. Excision of L3 from S20→S20 plants inhibited labelling of leaves L4-L6 but not total sulphur, whereas in S20→SO plants, excision of L3 inhibited the import of both total sulphur and 35S-label in leaves L4, L5 and L6. The data suggest that the soluble fraction of almost fully expanded leaves is an important reserve of sulphur for redistribution to growing leaves. The 35S-label in the root system exhibited fluctuations consistent with its proposed role in the recycling of soluble sulphur from the leaves.  相似文献   

18.
Riley  N.G.  Zhao  F.J.  McGrath  S.P. 《Plant and Soil》2000,222(1-2):139-147
A pot experiment was conducted to compare the availability and efficiency of three sulphur (S) fertilisers to wheat in the first year and oilseed rape in the second year, using six agricultural soils. Four treatments were applied in the initial year: control (no S), two forms of elemental S (either micronised S° particles or a bentonite + S° mixture) and a sulphate fertiliser (ammonium sulphate). In the first year, the micronised S° was as effective as the sulphate fertiliser, both producing similar increases of wheat grain yield (on average 36%) and S uptake (on average 164%) over the control. In contrast, responses to the bentonite + S° form were minimal, indicating a limited S supply. In the second year the control treatment failed to produce seeds in most soils, whereas the micronised S° and sulphate treatments increased seed yields of oilseed rape to an average of 13.4 and 12.9 g pot-1, respectively. The performance of the bentonite + S° varied between soils: two soils produced yields similar to those of the other S fertilisers, while the remaining soils had low yields. To test whether the poor performance of the bentonite clay + S° fertiliser was due to the lack of exposure of the prills to physical weathering in the glasshouse, the effect of freeze-thaw action on the fertilisers performance was assessed in a separate pot experiment. The responses in wheat yield and S uptake showed that freeze-thaw did not enhance the physical disruption of the prills or fertiliser effectiveness. These results suggest that the release of available S from the bentonite + S° mixture was too slow to meet the requirement of wheat and oilseed rape. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
《Geomicrobiology journal》2013,30(6):579-586
In a laboratory incubation study, effects of amendment with sodium salts of SO4 2?, Cl? and HCO3 ? either singly or as a mixture on CH4 production in a nonsaline alluvial soil under flooded condition were investigated. Methane production was considerable in the unamended alluvial soil, but was significantly inhibited following amendment with salts of different anions to raise the pore water EC to 8 dS·m?1. SO4 2? was the most inhibitory to CH4 production and the degree of inhibition followed the order SO4 2? > salt mixture > HCO3 ? > Cl?. Salt amendment did not adversely affect soil microbial activities as expressed in terms of soil redox potential (Eh) and soil pH. However, readily mineralizable carbon content, an indicator of substrate availability for methanogenic bacteria, differed significantly among the treatments. Most probable number estimates indicated that acetotrophic methanogenic bacterial population was lowest in Cl?-amended soils followed by SO4 2?-amendment with little or no changes in HCO3 ?-amended soils. The data suggested that the inhibition in methanogenesis in saline soils rich in sulphate as in coastal saline soils could be due to competitive inhibition of methanogens, while in inland soils, Cl? content could be a deciding factor.  相似文献   

20.
Background and Aims Thiophores, which are typically desert gypsophytes, accumulate high (2–6 % S dry weight) sulphur concentrations and may possess unique tolerance to environmental stress factors, e.g. sulphate/metal toxicity, drought and salinity. Little is known of the prevalence of the behaviour or the associated physiological aspects. The aim of this study was to (a) determine the prevalence of thiophore behaviour in a group of Australian xerophytes; (b) identify elemental uptake/storage characteristics of these thiophores; and (c) determine whether the behaviour is constitutive or environmental.Methods The elemental composition of soils and the foliage of 11 species (seven genera) at a site in the Tanami Desert (NT, Australia) was compared and 13 additional Acacia species from other locations were examined for elevated calcium and sulphur concentrations and calcium–sulphur mineralization, thought to be particular to thiophores.Key Results Acacia bivenosa DC. and 11 closely related species were identified as thiophores that can accumulate high levels of sulphur (up to 3·2 %) and calcium (up to 6.8 %), but no thiophores were identified in other genera occupying the same habitat. This behaviour was observed in several populations from diverse habitats, from samples collected over three decades. It was also observed that these thiophores featured gypsum (CaSO4·2H2O) crystal druses that completely filled cells and vascular systems in their dried phyllode tissues.Conclusions The thiophores studied exhibit a tight coupling between sulphur and calcium uptake and storage, and apparently store these elements as inorganic salts within the cells of their foliage. Thiophore behaviour is a constitutive trait shared by closely related Acacia but is not highly prevalent within, nor exclusive to, xerophytes. Several of the newly identified thiophores occupy coastal or riparian habitats, suggesting that the evolutionary and ecophysiological explanations for this trait do not lie solely in adaptation to arid conditions or gypsiferous soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号