首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用垂直板型聚丙烯酰胺凝胶电泳测定了海南粗榧5个种群遗传多样性和遗分化程度。结果表明:海南粗榧种群遗传多样性水平较低,多态位点比率P=0.33,等位基因平均数A=1.33,平均期望杂合度为He=0.135,观察杂合度为Ho=0139。种群间遗传分化程度较低,基因分化系数Gst=0.123,种群间遗传一致度和遗传距离的均值分别为0.9719、9.0288。黎母山种群与其它种群分化最大,其原因可能与传粉时盛行的风向有关。  相似文献   

2.
不同种群海南粗榧(Cephalotaxus mannii)遗传多样性研究   总被引:1,自引:0,他引:1  
采用垂直板型凝胶电泳技术 ,对海南粗榧 5个种群的遗传多样性进行了研究 ,结果表明 :海南粗榧遗传多样性水平低 ,多态位点比率 P=0 .3 3 ,等位基因平均数 A=1 .3 3 ,平均期望杂合度为 He=0 .1 3 5 ,观察杂合度 Ho=0 .1 3 9,黎母山种群所具有的相对丰富的遗传多样性使其成为保护和科研的重点  相似文献   

3.
采用7个多态微卫星DNA标记分析了4个高原鼠兔地理种群(海晏种群、西大滩东种群、西大滩西种群和昆仑山种群)的遗传多样性和遗传分化.采用多态信息含量(PIC)、期望杂合度(He)、观测杂合度(Ho)、基因流(Nm)和基因分化系数(Fst)对种群及物种的遗传多样性水平进行分析;计算各种群间的遗传距离(GD)、遗传相似度(GI)以及遗传距离与地理距离的相关系数,并进行UPGMA聚类分析.研究结果显示,高原鼠兔的遗传多样性在小哺乳动物中处于较高水平,其He和Ho的平均值分别为0.5332和0.6003,其Fst为0.0975,即有9.75%的变异存在于种群之间,即变异主要存在于种群内部.4个种群间的杂合度与多态信息含量均无显著差异,说明它们的遗传多样性水平基本相当.海晏种群与其余3个种群的遗传分化均达到了中度分化水平(Fst= 0.1043),而另3个种群间几乎没有分化(Fst=0.0253).Mantel test结果表明地理距离与遗传距离间没有显著的相关性.  相似文献   

4.
黔南60份茶树种质资源遗传多样性的SSR分析   总被引:1,自引:0,他引:1  
为探索黔南野生茶树种质资源的遗传多样性,利用SSR分子标记技术,对黔南60份茶树资源进行了DNA遗传多样性分析。结果表明:15对引物均显示多态性,基因多态性百分率为98.64%。15对SSR引物共扩增出147个观测等位基因和73.778 6个有效等位基因,平均每个引物扩增9.8个观测等位基因,4.918 6个有效等位基因。15个通用位点共产生280种基因型,平均每个位点18.7种基因型。遗传多态信息量变异范围为0.123 9~0.926 8,平均0.572 5,平均观测杂合度、平均期望杂合度和平均Shannons信息指数分别为0.470 0、0.602 3、1.464 4。经聚类分析后,60份材料间遗传相似系数在0.205 1~0.863 6之间,以平均遗传相似系数0.477 5为阈值,可将60份种质资源聚为8个类群,其在分子遗传水平上的分类结果与其材料来源分类的结果并不完全一致,而且材料来源地间遗传距离与地理距离不存在显著的相关性,有少部分同一来源的材料分散在各个类群中。研究认为,黔南茶树资源间的遗传差异较大,遗传基础较宽,具有丰富的遗传多样性。  相似文献   

5.
采用RAPD和mtDNA 16S rRNA基因序列分析方法对海南和马来西亚斑节对虾(Penaeus monodon)种群进行了遗传多样性和遗传分化研究.结果表明:15个RAPD随机引物共检测到82个位点,海南和马来西亚种群的多态位点比例分别为75.90%和76.83%,杂合度分别为0.199和0.218,遗传多样性指数分别为0.276和0.288,种群间的遗传距离为0.015;16S rRNA基因检测的种内遗传变异较低,马来西亚和海南种群的核苷酸多样性分别为0.011和0,种群之间的遗传距离为0.008;马来西亚种群比海南种群的遗传变异水平要高得多,且海南种群可能起源于马来西亚种群;进行遗传选育时可考虑引进马来西亚亲虾作为奠基群体.  相似文献   

6.
华东地区青冈种群的遗传多样性及遗传分化   总被引:21,自引:0,他引:21  
采用垂直板型聚丙烯酰胺凝胶电泳测定了华东地区6个青冈(Cyclobalanopsis glauca(Thunb.)Oerst.)种群的遗传多样性和遗传分化程度以及基因流。青冈种和种群水平都维持有较高的遗传多样性,期望杂合度分别为0.2252和0.2126,观察杂合度分别为0.1661和0.1771。种群间的遗传分化程度较低,分化度仅为5.6%,种群间的遗传一致度和遗传距离的均值分别为0.9729和0.0276。种群间的分化时间为1.4~27万年。基因流分别为4.21和20.49。  相似文献   

7.
为探讨国家级保护鸭种群的遗传多样性和遗传分化关系,利用17个微卫星标记,对我国6个国家级保护鸭品种资源的遗传多样性进行了分析,统计了平均遗传杂合度(H)、多态信息含量(PIC)、基因多样度(FST)、平均遗传分化系数(GST)和遗传距离等。结果表明,各鸭品种的杂合度较高,除两个群体表现为显著的杂合子缺失外,其他群体均处于Hard-Weinberg平衡状态。6个鸭种群间平均FST值为17.0%,平均遗传分化系数GST为14.7%,各品种平均杂合度为0.706~0.604,平均多态信息含量(PIC)为0.561~0.663。本研究说明我国6个国家级保护鸭品种资源各品种内和品种间的遗传变异大,遗传多样性丰富。  相似文献   

8.
运用刺叶苏铁、葫芦苏铁、海南苏铁的SSR引物,在仙湖苏铁中进行种间转移扩增,筛选得到7对引物能扩增出清晰的特异带,其中3对引物的扩增产物具有多态性.为验证微卫星的真实性,扩增产物切胶回收后克隆测序.结果表明:重复单元的数目变化是扩增片段长度多态性的主要来源.运用筛选出的3对 SSR标记对4个仙湖苏铁野生种群进行遗传结构研究,等位基因数从2~5,杂合度从0.000~0.667,期望杂合度为0.000~0.610.种群两两遗传分化系数从0~0.382.总体上仙湖苏铁遗传多样性水平低,而种群间遗传分化显著.STRUCTURE分析结果表明,4个野生种群可被分配到3个假想的遗传簇.BOTTLENECK 分析结果表明种群近期没有遭遇瓶颈效应.  相似文献   

9.
采用水平淀粉凝胶电泳技术及应用等位酶分析方法,研究我国河北黄骅、辽宁葫芦岛宽翅曲背蝗两个自然种群的遗传多样性和遗传分化。在检测的11种酶15个酶基因座位中,Adk-I、Fbp-I、Mdh-2和G3pd-I基因座位的等位基因少,而Fbp-2、Mdh-I和Me-I基因座位的等位基因多。对每个基因座位的各基因型进行χ^2检验,除Mdh-I在辽宁葫芦岛种群、Adk-I在河北黄骅种群分别符合Hardy-Weinberg平衡外,其余绝大多数基因座位的基因型频率显著偏离Hardy-Weinberg平衡。两个种群之间存在明显的遗传多样性和分化:多态位点百分率分别为100%和93.3%,等位基因平均数分别为3.1和2.5,平均杂合度观测值分别为0.086和0.061。与其他非迁飞性蝗虫如中华稻蝗(Oxya chinensis)比较,这种蝗虫种群的平均杂合度较低但遗传多态性较高。结果表明:该蝗虫较强的跳跃能力可使个体暴露于各种不同环境,有利于维持种内遗传多态性的动态平衡,而种群保持较高的遗传多态性能增强该物种在不同栖息地的生存和繁殖能力。F-统计量表明两个种群之间的遗传分化相对较小,但这种分化显著高于迁飞性蝗虫如东亚飞蝗(Locusta migratoria manilensis)。Nei的遗传一致度(I)和Roger的遗传距离(D)的结果分析揭示了两个种群之间较高的遗传一致度(I=0.904)和较小的遗传距离(D=0.256)。然而,在一些酶基因座位如Aep-I(Fst=0.462)和Pgi-I(Fst=0.182),F-统计值相对较大,遗传分化比较明显。  相似文献   

10.
三个野生群体日本囊对虾遗传多样性的SSR分析   总被引:1,自引:0,他引:1  
为了解野生种群日本囊对虾遗传分化和改良遗传育种,用SSR技术对福建厦门(XM)、广东湛江(ZJ)、广西北海(BH)3个地区野生日本囊对虾进行遗传多样性的研究。采用了10对微卫星引物对3个野生种群进行分析,10个微卫星位点在3个种群中均表现为高度的多态性,每个位点平均检测到3.87个等位基因;平均多态信息含量为0.5893;3个群体的观测杂合度分别为0.6243、0.5704、0.4661,全部群体观测杂合度平均为0.5536;期望杂合度分别为0.7193、0.6189、0.6226,全部群体平均期望杂合度为0.6536。这说明3个野生种群在10个微卫星位点上均具有丰富的遗传多样性。基于Nei's遗传距离的聚类分析显示厦门群体和湛江群体的遗传距离较近。  相似文献   

11.
Synopsis To assess the genetic variation and population structure of wild chum salmon in China, we analyzed microsatellite loci for populations in the Amur, Wusuli, Suifen Current and the Tumen rivers. We evaluated expected heterozygosity with two estimators of genetic differentiation (FST and GST) and Nei’s standard genetic distance. The average expected heterozygosity across the 10 loci was 0.65 in the Wusuli River and the Suifen Current River, 0.64 in the Amur River and 0.66 in the Tumen River, The results of this study show that the recent declines in chum salmon have not led to low levels of genetic variability in China. The proportion of inter-population subdivision among chum salmon was between 5.7 and 6.8%. According to the estimator used, the NJ tree based on Nei’s standard genetic distance indicated that there were two different branches (the Sea of Okhotsk branch and the Sea of Japan branch), the Amur River and the Wusuli River populations were closer, while the Suifen Current River and the Tumen River clustered together. The genetic test for population bottlenecks provided no evidence for a significant genetic signature of population decline, which is consistent with the record of the four populations we have in the last few years.  相似文献   

12.
The variability of 32 enzyme loci was studied in chum salmon populations with different types of reproduction—natural, mixed, and artificial—in some Magadan Region rivers. Among the populations studied, the values of mean heterozygosity and allele number per locus did not differ significantly. We found evidence of definite temporal stability of the populations, and also found that their genetic variability was expressed only slightly but still remained in spite of periodic egg transplantations between rivers. Statistically significant spatial genetic differentiation of the populations accounted for 0.55 to 0.76% of the total variation and the mean inter-year differentiation accounted for 0.30% of the total. Significant temporal (seasonal) genetic subdivision was revealed in chum salmon of the Tauy River. The populations of the Okhotsk Sea coast are very similar genetically to the east Sakhalin populations. The industrial chum salmon population founded and reproduced artificially in the Kulkuty River preserves the genetic similarity of the donor Yama River chum salmon. In the industrial population, we observed a tendency toward reduction of genetic variation over time. The contribution of the Yama population to the gene pool of the Ola chum salmon, (both by natural reproduction and by farming) is small in spite of many large-scale transplantations. However, the consequences of those transplantations are revealed by means of linkage disequilibrium analysis.  相似文献   

13.
Mitochondrial DNA (mtDNA) was examined in six wild populations of chum salmon ( Oncorhynchus keta Walbaum) distributed over the Primorye Region which extends approximately 1000 km along the Sea of Japan coast, and six populations from Sakhalin, using restriction enzyme analysis. By means of two restriction enzymes ( Bam HI and Eco 81I) eight mtDNA clonal lines were revealed in the 346 chum salmon studied. Mitochondrial DNA variants grouped the fish into two major clusters representing the Primorye and Sakhalin regions. Analysis of different chum salmon generations showed stability in the temporal population genetic structure in the three Primorye populations studied, but instability in the Sakhalin population of the Naiba River. We succeeded in detecting four major mtDNA clonal variants in Primorye chum salmon. The geographic distribution of clonal frequencies in Primorye populations has a clinal U-shape associated with the north-south axis of the Primorye region. On the whole, Sakhalin populations are less heterogeneous than Primorye ones. Two hatchery-seeded stocks from south west Sakhalin showed no mtDNA clonal variation.  相似文献   

14.
Lin JE  Hilborn R  Quinn TP  Hauser L 《Molecular ecology》2011,20(23):4925-4937
Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors.  相似文献   

15.
Chum salmon populations in the Russian Far East have a complex multi-level genetic structure. A total of 53 samples (2446 fish) were grouped into five major regional clusters: the southern Kurils, eastern Sakhalin, southwestern Sakhalin, the Amur River, and a northern cluster. The northern cluster consists of chum salmon populations from a vast geographical region, including Chukotka, Kamchatka, and the continental coast of the Sea of Okhotsk. However, the degree of its genetic differentiation is low, 1.9%. In contrast, the southern population cluster exhibits much higher variation; for example, differentiation between chum salmon groups within Sakhalin Island reaches 4.6%, and the differentiation between Iturup Island and Sakhalin Island chum salmon is 7.7%. This suggests that southern populations of Asian chum salmon have a more ancient evolutionary history than northern populations. In contrast to the available data, our study indicates a great deviation of southwestern Sakhalin populations from other Sakhalin chum salmon. The Russian Far East chum salmon are genetically diverse and show statistically significant differentiation even within small geographic localities. This can be used to assign samples of unknown origins to definite local populations.  相似文献   

16.
Poliakova NE  Semina AV  Brykov VA 《Genetika》2006,42(10):1388-1396
The results of examining mtDNA variation in populations of chum salmon Oncorhynchus keta from the rivers of the basins of the seas of Japan and Okhotsk and in the chum salmon seasonal races of the Amur River are presented. A significant level of polymorphism between the majority of the populations studied was detected. The groups of chum salmon from the Japan and Okhotsk Seas displayed the most pronounced differences. Analysis of genetic variation demonstrated that periodic paleontologic and climatic changes in the past of this region were the most probable factor that caused the divergence of these populations. The advances and retreats of glaciers and the accompanying regressions and transgressions of the ocean level caused isolation of chum salmon in the refugia belonging hypothetically to the paleo-Suifun and paleo-Amur regions. These population groups diverged presumably 350-450 thousand years ago. Differences between the seasonal races of the Amur chum salmon are insignificant, and their emergence dates back to the period of the last Wisconsin glaciation. Probably, the main isolation factor now is the genetically determined time of spawning.  相似文献   

17.
Based on the data of Russian and foreign researchers, a database, consisting of 100 allozyme-coding loci examined in 288 chum salmon populations from Asia and Northern America, was constructed. Using G-test, genetic heterogeneity of Asian population samples of chum salmon was evaluated. Correlations between the frequencies of major alleles and geographic latitude of the mouths of native rivers were estimated. Using the methods of Nei and Cavalli-Sforza and Edwards, for different local chum salmon stock groups the genetic distances at the number of polymorphic enzyme loci were determined. Analysis of these distances made it possible to evaluate the patterns of genetic diversity in regional population groups from the Russian Far East, Japan, and North America. The proportions of genetic variation at each hierarchical level, identified in accordance with the geographical positions of the populations, were estimated through partitioning of variation in Asian populations into within and between-population components. It was demonstrated that intraspecific genetic structure of chum salmon corresponded geographic subdivision into regional population groups.  相似文献   

18.
S P Pustovo?t 《Genetika》2001,37(12):1657-1662
The genetic structure of a small sockeye salmon population from the Ola River (Tauyskaya Inlet, the Okhotsk Sea) was shown to exhibit high heterogeneity. Significant differences of LDH-B2* and ALAT-2* gene frequencies were detected not only among samples within the spawner and juvenile groups but also between spawners and juveniles as a whole. The average heterozygosity of sockeye salmon from the Ola River was considerably lower than the corresponding values for other Asian populations. The Ola sockeye salmon is genetically similar to the population from the Pakhach River of the northwestern Kamchatka Peninsula but different from other Kamchatka populations and the Okhota River population. A hypothesis explaining the genetic differentiation of Asian sockeye populations is advanced.  相似文献   

19.
Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer‐run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations.  相似文献   

20.
A harvested stock of chum salmon homing to Kurilskiy Bay, Iturup Island, consists of two genetically distinct river populations that reproduce in two rivers that drain into the bay and are characterized by limited gene flow. One of these is small and can be regarded as wild, whereas the other is much larger and, until recently, was composed of naturally reproducing components spawning in the river??s mainstem and tributaries, with almost no hatchery reproduction during the past two decades. The only human impact on reproduction of the chum salmon stock was regulation of the escapement, with officially accepted limits to avoid ??over-escapement??. Recently the hatchery began to release a large amount of chum salmon juveniles. As confirmed by data on variation in both age composition and microsatellite DNA, first-generation hatchery-origin fish that returned from the first large releases occupied spawning grounds and presumably competed directly with, and potentially displaced wild fish. The most dramatic example is a genetically distinct beach-spawning form of chum salmon that was swamped by much more numerous hatchery-origin fish of the river-spawning form. In order to restore and support naturally reproduced population components, careful estimation of the carrying capacity of natural spawning grounds is necessary with efforts to increase escapement to these habitats. We also recommend concerted efforts to restore and conserve a unique beach-spawning population of chum salmon. We further recommend development of a marking program for direct estimation of straying and evaluation of ecological and genetic impacts of hatchery fish on neighboring wild and natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号